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Preface

A logic machine is a device, electrical or mechanical,

designed specifically for solving problems in formal logic. A logic

diagram is a geometrical method for doing the same thing. The two

fields are closely intertwined, and this book is the first attempt in

any language to trace their curious, fascinating histories.

Let no reader imagine that logic machines are merely the play-

things of engineers who happen ,
to have a recreational interest in

symbolic logic. As we move with terrifying speed into an age of

automation, the engineers and mathematicians who design our

automata constantly encounter problems that are less mathemati-

cal in form than logical. It has been discovered, for example,

that symbolic logic can be applied fruitfully to the design and

simplification of switching circuits. It has been found that electronic

calculators often require elaborate logic units to tell them what

steps to follow in tackling certain problems. And in the new field

of operations research, annoying situations are constantly arising

for which techniques of symbolic logic are surprisingly appropriate.

The last chaptej: of this book suggests some of the ways in which

logic machines may play essential roles in coping with the stagger-

ing complexities of an automated technology.

Although the book consists for the most part of material drawn

from widely separated and often relatively inaccessible books and

journals, it also contains much that has not previously been pub-

lished; at least, not in a layman's language. The reader will find,
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for example, some unfamiliar uses for the well known Venn circles;

an explanation of a novel network diagram for solving problems
in the propositional calculus; a popular exposition of the new

binary method of handling the calculus; and instructions for making

quaint cardboard devices that identify valid syllogisms and show

the formal fallacies of invalid ones.

The reader may wonder why so much of the first chapter is

devoted to the life and personality of Ramon Lull. The answer is

that Ramon's life is much more fascinating than his eccentric logic.

Other logicians mentioned in the book may have been far from

dull to those who knew them, but with the possible exception of

Lord Stanhope, recorded details of their lives are comparatively
drab and colorless. Lull's Quixotic career is little known outside of

Spain and France, and I make no apologies for introducing the

reader to one of the most remarkable tragicomic figures of the

Middle Ages.

In choosing symbols for the sentence connectives of the proposi-

tional calculus I have adopted those employed by Professor Alonzo

Church in Volume I of his Introduction to Mathematical Logic,

1956. The symbol for negation, ,
I have used throughout, even

though the logic under consideration may be the traditional class

logic or its modern formalization as Boolean algebra or the algebra
of sets. In class logic it is customary to speak of a "complement"
rather than a "negation" and to symbolize it as A or A', but in this

book so little notation is used for the class logic that it seemed best

to avoid introducing special symbols for it.

I would like to thank George W. Patterson and Wolfe Mays for

numerous corrections and suggestions; William Burkhart for valu-

able assistance in preparing the last two chapters; and my wife for

all sorts of help in all sorts of ways.

Martin Gardner
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1: The Ars Magna of

Ramon Lull

ear the city of Palma, on the island of

Majorca, largest of the Balearic isles off the eastern coast of Spain,

a huge saddle-shaped mountain called Mount Randa rises abruptly

from a monotonously level ridge of low hills. It was this desolate

mountain that Ramon Lull, Spanish theologian and visionary,

climbed in 1274 in search of spiritual refreshment. After many days

of fasting and contemplation, so tradition has it, he experienced a

divine illumination in which God revealed to him the Great Art by
which he might confound infidels and establish with certainty the

dogmas of his faith. According to one of many early legends describ-

ing this event, the leaves of a small lentiscus bush (a plant still

flourishing in the area) became miraculously engraven with letters

from the alphabets of many languages. They were the languages in

which Lull's Great Art was destined to be taught.

After his illumination, Lull retired to a monastery where he com-

pleted his famous Ars magna, the first of about forty treatises on the

working and application of his eccentric method. It was the earliest

attempt in the history of formal logic to employ geometrical dia-

grams for the purpose of discovering nonmathematical truths, and

the first attempt to use a mechanical device a kind of primitive

logic machine to facilitate the operation of a logic system.

Throughout the remainder of Lull's colorful, quixotic life, and

for centuries after his death, his Art was the center of stormy con-
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troversy. Franciscan leaders (Lull belonged to a lay order of the

movement) looked kindly upon his method, but Dominicans tended

to regard it as the work of a madman. Gargantua, in a letter to

his son Pantagruel (Rabelais, Gargantua and Pantagruel, Book II,

Chapter 8), advises him to master astronomy "but dismiss astrology
and the divinitory art of Lullius as but vanity and imposture." Fran-

cis Bacon similarly ridiculed the Art in two passages of almost

identical wording, one in The Advancement of Learning (Book II),

the other in De augmentis scientiarum, a revised and expanded ver-

sion of the former book. The passage in De augmentis (Book VI,

Chapter 2) reads as follows:

And yet I must not omit to mention, that some persons, more ostentatious

than learned, have laboured about a kind of method not worthy to be called

a legitimate method, being rather a method of imposture, which neverthe-

less would no doubt be very acceptable to certain meddling wits. The object
of it is to sprinkle little drops of science about, in such a manner that any
sciolist may make some show and ostentation of learning. Such was the Art

of Lullius: such the Typocosmy traced out by some; being nothing but a

mass and heap of the terms of all arts, to the end that they who are ready
with the terms may be thought to understand the arts themselves. Such
collections are like a fripper's or broker's shop, that has ends of everything,
but nothing of worth.

Swift is thought to have had Lull's Art in mind when he described

a machine invented by a professor of Laputa (Gulliver's Travels,

Part III, Chapter 5 ) . This contrivance was a 20-foot square frame

containing hundreds of small cubes linked together by wires. On
each face of every cube was written a Laputan word. By turning a

crank, the cubes were rotated to produce random combinations of

faces. Whenever a few words happened to come together and make
sense, they were copied down; then from these broken phrases
erudite treatises were composed. In this manner, Swift explained,
"the most ignorant person at a reasonable charge, and with a little

bodily labour, may write books in philosophy, poetry, politics, law,

mathematics, and theology, without the least assistance from genius
or study."

On the other hand we find Giordano Bruno, the great Renais-

sance martyr, speaking of Lull as "omniscient and almost divine,"

writing fantastically elaborate treatises on the Lullian Art, and

teaching it to wealthy noblemen in Venice where it had become a

fashionable craze. Later we find young Leibnitz fascinated by
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Lull's method. At the age of nineteen he wrote his Dissertio de arte

combinatoria (Leipzig, 1666), in which he discovers in Lull's work

the germ of a universal algebra by which all knowledge, including

moral and metaphysical truths, can some day be brought within a

single deductive system.
1 * u

lf controversies were to arise/' Leibnitz

later declared in an oft-quoted passage, "there would be no more

need of disputation between two philosophers than between two ac-

countants. For it would suffice to take their pencils in their hands,

to sit down to their slates, and to say to each other (with a friend

to witness, if they liked) : Let us calculate."

These speculations of Leibnitz's have led many historians to

credit Lull with having foreshadowed the development of modern

symbolic logic and the empiricist's dream of the "unity of science."

Is such credit deserved? Or was Lull's method little more than the

fantastic work of a gifted crank, as valueless as the geometric de-

signs of medieval witchcraft? Before explaining and attempting
to evaluate Lull's bizarre, now forgotten Art, it will perhaps be of

interest to sketch briefly the extraordinary, almost unbelievable

career of its inventor. 2

Ramon Lull was born at Palma, probably in 1232. In his early

teens he became a page in the service of King James I of Aragon
and soon rose to a position of influence in the court. Although he

married young and had two children, his life as a courtier was no-

toriously dissolute. "The beauty of women, O Lord," he recalled at

the age of forty, "has been a plague and tribulation to my eyes, for

because of the beauty of women have I been forgetful of Thy great

goodness and the beauty of Thy works."

The story of Lull's conversion is the most dramatic of the many
picturesque legends about him, and second only to Saint Augus-
tine's as a celebrated example of a conversion following a life of

indulgence. It begins with Lull's adulterous passion for a beautiful

and pious married woman who failed to respond to his overtures.

One day as he was riding a horse down the street he saw the lady

enter church for High Mass. Lull galloped into the cathedral after

her, only to be tossed out by irate worshippers. Distressed by this

scene, the lady resolved to put an end to Lull's campaign. She

invited him to her chamber, uncovered the bosom that he had been

praising in poems written for her, and revealed a breast partially

*
Superscript numbers designate references, to be found at the ends of chapters.
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consumed by cancer. "See, Ramon," she exclaimed, "the foulness

of this body that has won thy affection! How much better hadst thou

done to have set thy love on Jesus Christ, of Whom thou mayest
have a prize that is eternal!"

Lull retired in great shame and agitation. Shortly after this inci-

dent, while he was in his bedroom composing some amorous lyrics,

he was startled by a vision of Christ hanging on the Cross. On four

later occasions, so the story goes, he tried to complete the verses, and

each time was interrupted by the same vision. After a night of re-

morse and soul searching, he hurried to morning confession as a

penitent, dedicated Christian.

Lull's conversion was followed by a burning desire to win nothing
less than the entire Moslem world for Christianity. It was an obses-

sion that dominated the remainder of his life and eventually brought
about his violent death. As the first necessary step in this ambitious

missionary project, Lull began an intensive study of the Arabic

language and theology. He purchased a Moorish slave who lived

in his home for nine years, giving him instruction in the language.
It is said that one day Lull struck the slave in the face after hearing
him blaspheme the name of Christ. Soon thereafter the Moor re-

taliated by attacking Lull with a knife. Lull succeeded in disarming
him and the slave was jailed while Lull pondered the type of punish-
ment he should receive. Expecting to be put to death, the Moor
hanged himself with the rope that bound him.

Before this unfortunate incident, Lull had managed to finish

writing, probably in Arabic, his first book, the Book of Contempla-
tion. It is a massive, dull work of several thousand pages that seeks

to prove by "necessary reasons" all the major truths of Christianity.
Thomas Aquinas had previously drawn a careful distinction be-

tween truths of natural theology that he believed could be estab-

lished by reason, and truths of revelation that could be known only

by faith. Lull found this distinction unnecessary. He believed that

all the leading dogmas of Christianity, including the trinity and in-

carnation, could be demonstrated by irrefutable arguments, although
there is evidence that he regarded "faith" as a valuable aid in under-

standing such proofs.

Lull had not yet discovered his Great Art, but the Book of Con-

templation reveals his early preoccupation with a number symbol-
ism that was characteristic of many scholars of his time. The work
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is divided into five books in honor of the five wounds of Christ.

Forty subdivisions signify the forty days Christ spent in the wilder-

ness. The 366 chapters are designed to be read one a day, the last

chapter to be consulted only in leap years. Each chapter has ten

paragraphs (the ten commandments); each paragraph has three

parts (the trinity), making a total of thirty parts per chapter (the

thirty pieces of silver) . Angles, triangles, and circles are occasionally
introduced as metaphors. Of special interest to modern logicians is

Lull's practice of using letters to stand for certain words and phrases
so that arguments can be condensed to almost algebraic form. For

example, in Chapter 335 he employs a notation of 22 symbols and
one encounters passages such as this :

If in Thy three properties there were no difference . . . the demonstra-
tion would give the D to the H of the A with the F and the G as it does

with the E, and yet the K would not give significance to the H of any defect

in the F or the G; but since diversity is shown in the demonstration that the D
makes of the E and the F and the G with the / and the K, therefore the H
has certain scientific knowledge of Thy holy and glorious Trinity.

3

There are unmistakable hints of paranoid self-esteem in the value

Lull places on his own work in the book's final chapter. It will

not only prove to infidels that Christianity is the one true faith, he

asserts, but it will also give the reader who follows its teaching a

stronger body and mind as well as all the moral virtues. Lull ex-

presses the wish that his book be "disseminated throughout the

world," and he assures the reader that he has "neither place nor

time sufficient to recount all the ways wherein this book is good
and great."

These immodest sentiments are characteristic of most eccentrics

who become the founders of cults, and it is not surprising to hear

similar sentiments echoed by disciples of the Lullian Art in later

centuries. The Old Testament was regarded by many Lullists as the

work of God the Father, the New Testament, of God the Son, and

the writings of Lull, of God the Holy Spirit. An oft-repeated jingle

proclaimed that there had been three wise men in the world

Adam, Solomon, and Ramon:

Tres sabios hubo en el mundo,
A dan, Solomon y Raymundo.
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Lull's subsequent writings are extraordinarily numerous although

many of them are short and there is much repetition of material and

rehashing of old arguments. Some early authorities estimated that

he wrote several thousand books. Contemporary scholars consider

this an exaggeration, but there is good reason to think that more
than two hundred of the works attributed to him are his (the

alchemical writings that bear his name are known to be spurious ) .

Most of his books are polemical, seeking to establish Christian

doctrines by means of "necessary reasons," or to combat Averroism,

Judaism, and other infidel doctrines. Some are encyclopedic sur-

veys of knowledge, such as his 1,300-page Tree of Science in which

he finds himself forced to speak "of things in an abbreviated

fashion." Many of his books are in the form of Socratic dialogues.

Others are collections of terse aphorisms, such as his Book of

Proverbs, a collection of some 6,000 of them. Smaller treatises,

most of which concern the application of his Great Art, are devoted

to almost every subject matter with which his contemporaries were

concerned astronomy, chemistry, physics, medicine, law, psychol-

ogy, mnemonics, military tactics, grammar, rhetoric, mathematics,

zoology, chivalry, ethics, politics.

Very few of these polemical and pseudo-scientific works have

been translated from the original Catalan or Latin versions, and even

in Spain they are now almost forgotten. It is as a poet and writer of

allegorical romances that Lull is chiefly admired today by his

countrymen. His Catalan verse, especially a collection of poems on
The Hundred Names of God, is reported to be of high quality, and
his fictional works contain such startling and imaginative concep-
tions that they have become an imperishable part of early Spanish
literature. Chief of these allegorical books is Blanquerna, a kind of

Catholic Pilgrim's Progress* The protagonist, who closely resembles

the author, rises through various levels of church organization until

he becomes Pope, only to abandon the office, amid much weeping
of cardinals, to become a contemplative hermit.

The Book of the Lover and the Beloved, Lull's best known work,
is contained within Blanquerna as the supposed product of the

hermit's pen.
5 More than any other of Lull's works, this book makes

use of the phrases of human love as symbols for divine love a prac-
tice as common in the Moslem literature prior to Lull's time as

it was later to become common in the writings of Saint Theresa and
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other Spanish mystics. Amateur analysts who enjoy looking for

erotic symbols will find The Book of the Lover and the Beloved

a fertile field. All of Lull's passionate temperament finds an outlet

here in his descriptions of the intimate relationship of the lover

(himself) to his Beloved (Christ).

In Lull's other great work of fantasy, Felix, or the Book of

Marvels, we find him describing profane love in scenes of such

repulsive realism that they would shock even an admirer of Henry
Miller's fiction. It is difficult not to believe that Lull's postconversion

attitude toward sex had much to do with his vigorous defense of

the doctrine of the immaculate conception at a time when it was

opposed by the Thomists and of course long before it became church

dogma.
After Lull's illumination on Mount Randa, his conviction grew

steadily that in his Art he had found a powerful weapon for the

conversion of the heathen. The failure of the Crusades had cast

doubt on the efficacy of the sword. Lull was convinced that ra-

tional argument, aided by his method, might well become God's

new means of spreading the faith. The remainder of his life was

spent in restless wandering and feverish activity of a missionary and

evangelical character. He gave up the large estate he had inherited

from his father, distributing his possessions to the poor. His wife

and child were abandoned, though he provided liberally for their

welfare. He made endless pilgrimages, seeking the aid of popes and

princes in the founding of schools and monasteries where his Great

Art could be taught along with instruction in heathen languages.

The teaching of Oriental languages to missionaries was one of

Lull's dominant projects and he is justly regarded as the founder

of Oriental studies in European education.

The esoteric character of his Art seems to have exerted a strong

magic appeal. Schools and disciples grew so rapidly that in Spain

the Lullists became as numerous as the Thomists. Lull even taught

on several occasions at the great University of Paris a signal honor

for a man holding no academic degree of any kind. There is an

amusing story about his attendance, when at the Sorbonne, of a

class taught by Duns Scotus, then a young man fresh from triumphs

at Oxford. It seems that Scotus became annoyed by the old man

in his audience who persisted in making signs of disagreement with

what was being said. As a rebuke, Scotus asked him the exceedingly
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elementary question, "What part of speech is 'Lord
1

?
1 '

Lull im-

mediately replied, "The Lord is no part, but the whole," then pro-

ceeded to stand and deliver a loud and lengthy oration on the per-

fections of God. The story is believable because Lull always be-

haved as a man possessed by inspired, irrefutable truth.

On three separate occasions Lull made voyages to Africa to clash

verbal swords with Saracen theologians and to preach his views in

the streets of Moslem cities. On the first two visits he barely escaped

with his life. Then at the age of eighty-three, his long beard snow

white and his eyes burning with desire for the crown of martyrdom,
he set sail once more for the northern shore of Africa. In 1315, on

the streets of Bugia, he began expounding in a loud voice the errors

of Moslem faith. The Arabs were understandably vexed, having
twice ousted this stubborn old man from their country. He was

stoned by the angry mob and apparently died on board a Genoese

merchant ship to which his bruised body had been carried. A legend

relates that before he died he had a vision of the American conti-

nent and prophesied that a descendant (i.e., Columbus) of one of

the merchants would some day discover the new world.

". . . no Spaniard since," writes Havelock Ellis (in a chapter on

Lull in his The Soul of Spain, 1908), "has ever summed up in his

own person so brilliantly all the qualities that go to the making of

Spain. A lover, a soldier, something of a heretic, much of a saint,

such has ever been the typical Spaniard." Lull's relics now rest in

the chapel of the church of San Francisco, at Palma, where they are

venerated as those of a saint, in spite of the fact that Lull has never

been canonized.

In turning now to an examination of the Great Art itself,
7

it is

impossible, perhaps, to avoid a strong sense of anticlimax. One
wishes it were otherwise. It would be pleasant indeed to discover

that Lull's method had for centuries been unjustly maligned and

that by going directly to the master's own expositions one might
come upon something of value that deserves rescue from the

oblivion into which it has settled. Medieval scholars themselves

sometimes voice such hopes. "We have also excluded the work of

Raymond Lull," writes Philotheus Boehner in the introduction to

his Medieval Logic, 1952, "since we have to confess we are not

sufficiently familiar with his peculiar logic to deal with it adequately,

though we suspect that it is much better than the usual evaluation
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by historians would lead us to believe." Is this suspicion justified?

Or shall we conclude with Etienne Gilson (History of Christian

Philosophy in the Middle Ages, 1955) that when we today try to

use Lull's tables "we come up against the worst difficulties, and

one cannot help wondering whether Lull himself was ever able to

use them"?
"
Essentially, Lull's method was as follows. In every branch of

knowledge, he believed, there are a small number of simple basic

principles or categories that must be assumed without question. By
exhausting all possible combinations of these categories we are able

to explore all the knowledge that can be understood by our finite

minds. To construct tables of possible combinations we call upon the

aid of both diagrams and rotating circles. For example, we can list

Figure 1.

two sets of categories in two vertical columns (Figure 1), then ex-

haust all combinations simply by drawing connecting lines as shown.

Or we can arrange a set of terms in a circle (Figure 2), draw con-

necting lines as indicated, then by reading around the circle we

quickly obtain a table of two-term permutations.

A third method, and the one in which Lull took the greatest

pride, is to place two or more sets of terms on concentric circles as

shown in Figure 3. By rotating the inner circle we easily obtain a

table of combinations. If there are many sets of terms that we wish

to combine, this mechanical method is much more efficient than the

others. In Lull's time these circles were made of parchment or metal

and painted vivid colors to distinguish different subdivisions of

terms. There is no doubt that the use of such strange, multicolored

devices threw an impressive aura of mystery around Lull's teach-
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ings that greatly intrigued men of little learning, anxious to find a

short-cut method of mastering the intricacies of scholasticism. We
find a similar appeal today in the "structural differential" invented

by Count Alfred Korzybski to illustrate principles of general seman-

tics. Perhaps there is even a touch of the same awe in the reverence

with which some philosophers

view symbolic logic as a tool of

philosophical analysis.

Before going into the more

complicated aspects of Lull's

method, let us give one or two

concrete illustrations of how Lull

used his circles. The first of his

seven basic "figures" is called A.

The letter "A," representing God,
is placed in the center of a circle.

Around the circumference, inside

sixteen compartments (or "cam-

erae" as Lull called them), we
now place the sixteen letters from B through R (omitting / which
had no existence in the Latin of the time). These letters stand
for sixteen divine attributes B for goodness (bonitas), C for

greatness (magnitude), D for eternity (eternitas), and so on.

By drawing connecting lines (Figure 4) we obtain 240 two-term

permutations of the letters, or 120 different combinations that can
be arranged in a neat triangular table as shown below.

Figure 3.

BC BD BE BF BO BH BI BK BL BM BN BO BP BQ BR
CD CE CF CG CH Cl CK CL CM CN CO CP CQ CR

DE DF DC DH Dl DK DL DM DN DO DP DQ DR
EF EG EH El EK EL EM EN EO EP EQ ER

FG Fff Fl FK FL FM FN FO FP FQ FR
GH GI GK GL CM GN GO GP GQ GR

HI HK HL HM HN HO HP HQ HR
IK 1L 1M IN 10 IP IQ IR

KL KM KN KO KP KQ KR
LM LN LO LP LQ LR

MN MO MP MQ MR
NO NP NQ NR

OP OQ OR
PQ PR

QR



Figures 4 to 9, left to right, top to bottom. (From the Enc/c/opeaVa universal //usfrada, Bar-

celona, 1923,)

n
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Each of the above combinations tells us an additional truth about

God. Thus we learn that His goodness is great (BC) and also

eternal (#>), or to take reverse forms of the same pairs of letters,

His greatness is good (CB) and likewise His eternity (>). Re-

flecting on these combinations will lead us toward the solution of

many theological difficulties. For example, we realize that predesti-

nation and free will must be combined in some mysterious way be-

yond our ken; for God is both infinitely wise and infinitely just;

therefore He must know every detail of the future, yet at the same
time be incapable of withholding from any sinner the privilege of

choosing the way of salvation. Lull considered this a demonstration

"per aequiparantium," or by means of equivalent relations. Instead

of connecting ideas in a cause-and-effect chain, we trace them back

to a common origin. Free will and predestination sprout from

equally necessary attributes of God, like two twigs growing on

branches attached to the trunk of a single tree.

Lull's second figure concerns the soul and is designated by the

letter 5. Four differently colored squares are used to represent four

different states of the soul. The blue square, with corners B, C, D, E,

is a normal, healthy soul. The letters signify memory that remem-
bers (#), intellect that knows (C), will that loves (D), and the

union of these three faculties (E) . The black square (FGHI) is the

condition that results when the will hates in a normal fashion as,

for example, when it hates sin. This faculty is symbolized by the

letter H. F and G stand for the same faculties as B and C, and / for

the union of F, G, and H. The red square (KLMN) denotes a con-

dition of soul in which the memory forgets (K ) ,
the rnind is ignorant

(L), and the will hates in an abnormal fashion (M) . These three

degenerate faculties are united in N. The green square (OPQR) is

the square of ambivalence or doubt. R is the union of a memory
that retains and forgets (0), a mind that both knows and is

ignorant (P), and a will that loves and hates (Q). Lull considered

this last state the unhealthiest of the four. We now superimpose the

four squares (Figure 5) in such a way that their colored corners

form a circle of sixteen letters. This arrangement is more ingenious
than one might at first suppose. For in addition to the four corner

letters E, I, N, R, which are unions of the other three corners of

their respective squares, we also find that the faculties 0, P, and Q
are unions of the three faculties that precede them as we move clock-
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wise around the figure. The circle of sixteen letters can now be ro-

tated within a ring of compartments containing the same faculties

to obtain 136 combinations of faculties.

It would be impossible and profitless to describe all of Lull's

scores of other figures, but perhaps we can convey some notion of

their complexity. His third figure, T, concerns relations between

things. Five equilateral triangles of five different colors are super-

imposed to form a circle of fifteen letters, one letter at each vertex

of a triangle (Figure 6). As in the previous figure, the letters are

in compartments that bear the same color as the polygon for which

they mark the vertices. The meanings of the letters are: God, crea-

ture, and operation (blue triangle); difference, similarity, con-

trariety (green); beginning, middle, end (red); majority, equality,

minority (yellow); affirmation, negation, and doubt (black). Ro-

tating this circle within a ring bearing the same fifteen basic ideas

(broken down into additional elements) gives us 120 combinations,

excluding pairs of the same term (BE, CC, etc.) We are thus able

to explore such topics as the beginning and end of God, differences

and similarities of animals, and so on. Lull later found it necessary

to add a second figure T, formed of five tinted triangles whose

vertices stand for such concepts as before, after, superior, inferior,

universal, particular, etc. This likewise rotated within a ring to pro-

duce 120 combinations. Finally, Lull combined the two sets of

concepts to make thirty in all. By placing them on two circles he

obtained 465 different combinations.

Lull's fourth figure, which he called V, deals with the seven

virtues and the seven deadly sins. The fourteen categories are ar-

ranged alternately around a circle in red (sinful) and blue (virtu-

ous) compartments (Figure 7). Drawing connecting lines, or ro-

tating the circle within a similarly labeled ring, calls our attention

to such questions as when it might be prudent to become angry,

when lust is the result of slothfulness, and similar matters. Lull's

figure X employs eight pairs of traditionally opposed terms, such

as being (esse) and privation (privatio), arranged in alternate blue

and green compartments (Figure 8 ) . Figures Y and Z are undivided

circles signifying, respectively, truth and falsehood. Lull used these

letters occasionally in connection with other figures to denote the

truth or falsehood of certain combinations of terms.

This by no means exhausts Lull's use of rotating wheels. Hardly
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a science or subject matter escapes his analysis by this method. He
even produced a book on how preachers could use his Art to dis-

cover new topics for sermons, supplying the reader with 100 sample
sermons produced by his spinning wheels! In every case the tech-

nique is the same: find the basic elements, then combine them me-

chanically with themselves or with the elements of other figures.

Dozens of his books deal with applications of the Art, introducing

endless small variations of terminology and symbols. Some of these

works are introductions to more comprehensive treatises. Some are

brief, popular versions for less intellectual readers who find it hard

to comprehend the more involved figures. For example, the cate-

gories of certain basic figures are reduced from sixteen to nine (see

Figure 9 ) . These simpler ninefold circles are the ones encountered

in the writings of Bruno, Kircher, and other Renaissance Lullists, in

Hegel's description of the Art (Lectures on the History of Philos-

ophy, Vol. 3), and in most modern histories of thought that find

space for Lull's method. Two of Lull's treatises on his Art are

written entirely in Catalan verse.

One of Lull's ninefold circles is concerned with objects of knowl-

edge God, angel, heaven, man, the imagination, the sensitive, the

negative, the elementary, and the instrumental. Another asks the

nine questions whether? what? whence? why? how great? of what

kind? when? where? and how? Many of Lull's books devote con-

siderable space to questions suggested by these and similar circles.

The Book of the Ascent and Descent of the Intellect, using a twelve-

fold and a fivefold circle in application to eight categories (stone,

flame, plant, animal, man, heaven, angel, God) considers such

scientific posers as: Where does the flame go when a candle is put
out? Why does rue strengthen the eyes and onions weaken them?

Where does the cold go when a stone is warmed?

In another interesting work Lull uses his Art to explain to a her-

mit the meaning of some of the Sentences of Peter Lombard. The

book takes up such typical medieval problems as: Could Adam
and Eve have cohabited before they ate their first food? If a child

is slain in the womb of a martyred mother, will it be saved by a bap-
tism of blood? How do angels speak to each other? How do angels

pass from one place to another in an instant of time? Can God
make matter without form? Can He damn Peter and save Judas?

Can a fallen angel repent? In one book, the Tree of Science, over
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four thousand such questions are raised! Sometimes Lull gives the

combination of terms in which the answer may be found, together
with a fully reasoned commentary. Sometimes he merely indicates

the figures to be used, letting the reader find the right combinations

for himself. At other times he leaves the question entirely un-

answered.

The number of concentric circles to be used in the same figure

varies from time to time two or three being the most common.
The method reaches its climax in a varicolored metal device called

the ftgura universalis which has no less than fourteen concentric

circles! The mind reels at the number and complexity of topics that

can be explored by this fantastic instrument.

Before passing on to an evaluation of Lull's method, it should be

mentioned that he also frequently employed the diagrammatic de-

vice of the tree to indicate subdivisions of genera and species. For

Lull it was both an illustrative and a mnemonic device. His Prin-

ciples of Medicine, for example, pictures his subject matter as a

tree with four roots (the four humors) and two trunks (ancient

and modern medicine). The trunks branch off into various boughs
on which flowers bloom, each flower having a symbolic meaning
(air, exercise, food, sleep, etc.). Colored triangles, squares, and

other Lullian figures also are attached to the branches.

None of Lull's scientific writings, least of all his medical works,

added to the scientific knowledge of his time. In such respects he

was neither ahead nor behind his contemporaries. Alchemy and

geomancy he rejected as worthless. Necromancy, or the art of com-

municating with the dead, he accepted in a sense common in his day
and still surviving in the attitude of many orthodox churchmen;

miraculous results are not denied, but they are regarded as demonic

in origin. Lull even used the success of necromancers as a kind of

proof of the existence of God. The fallen angels could not exist, he

argued, if God had not created them.

There is no doubt about Lull's complete acceptance of astrology.

His so-called astronomical writings actually are astrological, show-

ing how his circles can be used to reveal various favorable and un-

favorable combinations of planets within the signs of the zodiac.

In one of his books he applies astrology to medicine. By means of

the Art he obtains sixteen combinations of the four elements (earth,

air, fire, water) and the four properties (hot, cold, moist, dry).
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These are then combined in various ways with the signs of the zodiac

to answer medical questions concerning diet, evacuation, prepara-
tion of medicines, fevers, color of urine, and so on.

There is no indication that Ramon Lull, the Doctor Illuminatus

as he was later called, ever seriously doubted that his Art was the

product of divine illumination. But one remarkable poem, the

Desconort ("Disconsolateness"), suggests that at times he may have

been tormented by the thought that possibly his Art was worthless.

The poem is ingeniously constructed of sixty-nine stanzas, each

consisting of twelve lines that end in the same rhyme. It opens with

Lull's bitter reflections on his failure for the past thirty years to

achieve any of his missionary projects. Seeking consolation in the

woods, he comes upon the inevitable hermit and pours out to him
the nature of his sorrows. He is a lonely, neglected man. People

laugh at him and call him a fool. His great Art is ridiculed and ig-

nored. Instead of sympathizing, the hermit tries to prove to Ramon
that he deserves this ridicule. If his books on the Art are read by
men "as fast as a cat that runs through burning coals," perhaps this

is because the dogmas of the church cannot be demonstrated by
reason. If they could be, then what merit would there be in believ-

ing them? In addition, the hermit argues, if Lull's method is so valu-

able, how is it that the ancient philosophers never thought of it?

And if it truly comes from God, what reason has he to fear it will

ever be lost?

Lull replies so eloquently to these objections that we soon find

the hermit begging forgiveness for all he has said, offering to join

Ramon in his labors, and even weeping because he had not learned

the Art earlier in life!

Perhaps the most striking illustration of how greatly Lull valued

. his method is the legend of how he happened to join the third order

of Franciscans. He had made all necessary arrangements for his

first missionary trip to North Africa, but at the last moment, tor-

mented by doubts and fears of imprisonment and death, he allowed

the boat to sail without him. This precipitated a mental breakdown
that threw him into a state of profound depression. He was carried

into a Dominican church and while praying there he saw a light

like a star and heard a voice speak from above: "Within this order

thou shalt be saved." Lull hesitated to join the order because he
knew the Dominicans had little interest in his Art whereas the
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Franciscans had found it of value. A second time the voice spoke
from the light, this time threateningly: "And did I not tell thee

that only in the order of the Preachers thou wouldst find salvation?"

Lull finally decided it would be better to undergo personal damna-

tion than risk the loss of his Art whereby others might be saved.

Ignoring the vision, he joined the Franciscans.

It is clear from Lull's writings that he thought of his method as

possessing many values. The diagrams and circles aid the under-

standing by making it easy to visualize the elements of a given

argument. They have considerable mnemonic value, an aspect of his

Art that appealed strongly to Lull's Renaissance admirers. They
have rhetorical value, not only arousing interest by their picturesque,

cabalistic character, but also aiding in the demonstration of proofs

and the teaching of doctrines. It is an investigative and inventive art.

When ideas are combined in all possible ways, the new combina-

tions start the mind thinking along novel channels and one is led to

discover fresh truths and arguments, or to make new inventions.

Finally, the Art possesses a kind of deductive power.
Lull did not, however, regard his method as a substitute for the

formal logic of Aristotle and the schoolmen. He was thoroughly

familiar with traditional logic and his writings even include the

popular medieval diagrams of immediate inference and the various

syllogistic figures and moods. He certainly did not think that the

mere juxtaposition of terms provided in themselves a proof by

"necessary reasons." He did think, however, that by the mechanical

combination of terms one could discover the necessary building

blocks out of which valid arguments could then be constructed. Like

his colleagues among the schoolmen, he was convinced that each

branch of knowledge rested on a relatively few, self-evident princi-

ples which formed the structure of all knowledge in the same way
that geometrical theorems were formed out of basic axioms. It was

natural for him to suppose that by exhausting the combinations of

such principles one might thereby explore all possible structures of

truth and so obtain universal knowledge.

There is a sense, of course, in which Lull's method of explora-

tion does possess a formal deductive character. If we wish to exhaust

the possible combinations of given sets of terms, then Lull's method

obviously will do this for us in an irrefutable way. Considered mathe-

matically, the technique is sound, though even in its day it was es-
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sentially trivial. Tabulating combinations of terms was certainly a

familiar process to mathematicians as far back as the Greeks, and

it would be surprising indeed if no one before Lull had thought of

using movable circles as a device for obtaining such tables. Lull's

mistake, in large part a product of the philosophic temper of his

age, was to suppose that his combinatorial method had useful ap-

plication to subject matters where today we see clearly that it does

not apply. Not only is there a distressing lack of "analytic" structure

in areas of knowledge outside of logic and mathematics, there is not

even agreement on what to regard as the most primitive, "self-evi-

dent" principles in any given subject matter. Lull naturally chose

for his categories those that were implicit in the dogmas and opin-

ions he wished to establish. The result, as Chesterton might have

said, was that Lull's circles led him in most cases into proofs that

were circular. Other schoolmen were of course often guilty of

question begging, but it was Lull's peculiar distinction to base this

type of reasoning on such an artificial, mechanical technique that

it amounted virtually to a satire of scholasticism, a sort of hilarious

caricature of medieval argumentation.

We have mentioned earlier that it was Leibnitz who first saw in

Lull's method the possibility of applying it to formal logic.
8 For ex-

ample, in his Dissertio de arte combinatoria Leibnitz constructs an

exhaustive table of all possible combinations of premises and con-

clusions in the traditional syllogism. The false syllogisms are then

eliminated, leaving no doubt as to the number of valid ones, though
of course revealing nothing that was not perfectly familiar to

Aristotle. A somewhat similar technique of elimination was used

by Jevons (as we shall see in Chapter 5) in his "logical alphabet"
and his logic machine, and is used today in the construction of

matrix tables for problems in symbolic logic. Like Lull, however,

Leibnitz failed to see how restricted was the application of such a

technique, and his vision of reducing all knowledge to composite
terms built up out of simple elements and capable of being manipu-
lated like mathematical symbols is certainly as wildly visionary as

Lull's similar dream. It is only in the dimmest sense that Leibnitz

can be said to anticipate modern symbolic logic. In Lull's case the

anticipation is so remote that it scarcely deserves mention.

Still, there is something to be said for certain limited applications

of Lull's circles, though it must be confessed that the applications
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are to subject matters which Lull would have considered frivolous.

For example, parents seeking a first and middle name for a newborn

baby might find it useful to write all acceptable first names in one

circle and acceptable middle names on a larger circle, then rotate

the inner circle to explore the possible combinations. Ancient cod-

ing and decoding devices for secret ciphers make use of Lullian-type

wheels. Artists and decorators sometimes employ color wheels for

exploring color combinations. Anagram puzzles often can be solved

quickly by using Lullian circles to permute the required letters. A
cardboard toy for children consists of a rotating circle with animal

pictures around the circumference, half of each animal on the circle

and half on the sheet to which the wheel is fastened. Turning the

circle produces amusing combinations a giraffe's head on the

body of a hippopotamus, and so on. One thinks also of Sam Loyd's

famous "Get off the earth" paradox. Renan once described Lull's

circles as "magic," but in turning Loyd's wheel the picture of an

entire Chinese warrior is made to vanish before your very eyes.
9

It is amusing to imagine how Lull would have analyzed Loyd's para-

dox, for his aptitude for mathematical thinking was not very high.

Even closer to the spirit of Lull's method is a device that was sold

to fiction writers many years ago and titled, if I remember cor-

rectly, the "Plot Genii." By turning concentric circles one could

obtain different combinations of plot elements. (One suspects that

Aldous Huxley constructed his early novels with the aid of wheels

bearing different neurotic types. He simply spun the circles until he

found an amusing and explosive combination of house guests.)

Mention also should be made of the book called flotto, privately

published in Battle Creek, Mich., 1928, by William Wallace Cook,

a prolific writer of potboilers. Although flotto did not use spinning

wheels, it was essentially Lullian in its technique of combining plot

elements, and apparently there were many writers willing to pay

the seventy-five dollar price originally asked by the author.

In current philosophy one occasionally comes upon notions for

which a Lullian device might be appropriate. For instance, Charles

Morris tells us that a given sign (e.g., a word) can be analyzed in

terms of three kinds of meaning: syntactic, semantic, and pragmatic.

Each meaning in turn has a syntactic, semantic, and pragmatic

meaning, and this threefold analysis can be carried on indefinitely.

To dramatize this dialectical process one might use a series of ro-
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tating circles, each bearing the words "syntactic," "semantic," and

"pragmatic," with the letter 5 in the center of the inner wheel to

signify the sign being analyzed.

In science there also are rare occasions when a Lullian technique

might prove useful. The tree diagram is certainly a convenient way
to picture evolution. The periodic table can be considered a kind of

Lullian chart that exhausts all permissible combinations of certain

primitive principles and by means of which chemists have been

able to predict the properties of elements before they were dis-

covered. Lull's crude anticipation was a circle bearing the four tra-

ditional elements and rotated within a ring similarly labeled.

There may even be times when an inventor or researcher might
find movable circles an aid. Experimental situations often call for

a testing of all possible combinations of a limited number of sub-

stances or techniques. What is invention, after all, except the knack

of finding new and useful combinations of old principles? When
Thomas Edison systematically tested almost every available sub-

stance as a filament for his light bulb, he was following a process

that Lull would probably have considered an extension of his

method. One American scientist, an acoustical engineer and semi-

professional magician, Dariel Fitzkee, actually published in 1944 a

book called The Trick Brain in which he explains a technique for

combining ideas in Lullian fashion for the purpose of inventing new

magic tricks.

If the reader will take the trouble to construct some Lullian

circles related to a subject matter of special interest to himself, and

play with them for a while, he will find it an effective way of getting

close to Lull's mind. There is an undeniable fascination in twisting

the wheels and letting the mind dwell on the strange combinations

that turn up. Something of the mood of medieval Lullism begins to

pervade the room and one comprehends for the first time why the

Lullian cult persisted for so many centuries.

For persist it did.
10

Fifty years after Lull's death it was strong

enough to provoke a vigorous campaign against Lullism, led by
Dominican inquisitors. They succeeded in having Lull condemned

as a heretic by a papal bull, though later church officials decided

that the bull had been a forgery. Lullist schools, supported chiefly by

Franciscans, flourished throughout the late Middle Ages and Ren-

aissance, mostly in Spain but also in other parts of Europe. We
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have already cited Bruno's intense interest in the Art. The great ex-

Dominican considered Lull's method divinely inspired though badly

applied. For example, he thought Lull mad to suppose that such

truths of faith as the incarnation and trinity could be established

by necessary reasons. Bruno's first and last published works, as well

as many in between, were devoted to correcting and improving the

method, notably The Compendious Building and Completion of

the Lullian Art.

In 1923 the British Museum acquired a portable sundial and

compass made in Rome in 1593 in the form of a book (Figure 10).

Figure 10. Sixteenth-century portable sundial engraved with Lullian figures. (From Arcfiae-

o/og/a, Oxford, 1925.)

On the front and back of the two gilt copper "covers" are en-

graved the Lullian circles shown in Figures 11 to 14. For an ex-

planation of these circles the reader is referred to O. M. Dalton's

article, "A Portable Dial in the Form of a Book, with Figures De-

rived from Ramon Lul," Archaeologia, Vol. 74, second series, Ox-

ford, 1925, pp. 89-102.

The seven smaller diagrams in Figure 12 are all from Lull's

writings
n and perhaps worth a few comments. The square in the

upper left corner is designed to show how the mind can conceive

of geometrical truths not apparent to the senses. A diagonal di-

vides the square into two large triangles, one of which is subdivided

to make the smaller triangles B and C. Each triangle contains three

angles; so that our senses immediately perceive nine angles in all.

However, we can easily imagine the large triangle to be subdi-
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vided also, making four small triangles or twelve angles in all. The
three additional angles exist "potentially" in triangle A. We do not

see them with our eyes, but we can see them with our imagination.
In this way our intellect, aided by imagination, arrives at new

geometrical truths.

The top right square is designed to prove that there is only one

universe rather than a plurality of worlds. The two circles repre-

sent two universes. We see at once that certain parts of A and B
are nearer to each other than other parts of A and B. But, Lull

argues, "far" and "near" are meaningless concepts if nothing what-

ever exists in the space between A and B. We are forced to con-

clude that two universes are impossible.

I think what Lull means here, put in modern terms, is that we
cannot conceive of two universes without supposing some sort of

space-time relation between them, but once we relate them, we

bring them into a common manifold; so we can no longer regard

them as separate universes. Lull qualifies this by saying that his

argument applies only to actual physical existence, not to higher

realms of being which God could create at will, since His power
is infinite.

The four intersecting circles are interesting because they an-

ticipate in a vague way the use of circles to represent classes in the

diagrammatic methods of Euler and Venn (to be discussed in the

next chapter). The* four letters which label the circles stand for

Esse (being), Unwn (the one), Verum (the true), and Bonum

(the good). Unum, verum, and bonum are the traditional three

"transcendentales" of scholastic philosophy. The overlapping of

the circles indicates that the four qualities are inseparable. Nothing
can exist without possessing unity, truth, and goodness.

The circle divided into three sectors represents the created uni-

verse, but I am not sure of the meaning of the letters which ap-

parently signify the parts. The lower left square illustrates a prac-

tical problem in navigation. It involves a ship sailing east, but

forced to travel in a strong north wind. The lower right square

is clearly a Lullian table displaying the twelve permutations of

ABCD taken two letters at a time.

The remaining diagram, at the middle of the bottom, is a primi-

tive method of squaring the circle and one fairly common in me-

dieval pseudo-mathematical works. We first inscribe a square and
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circumscribe a square; then we draw a third square midway be-

tween the other two. This third square, Lull mistakenly asserts, has

a perimeter equal to the circumference of the circle as well as an

area equal to the circle's area. Lull's discussion of this figure (in his

Ars magna et ultima) reveals how far behind he was of the geom-

etry of his time. 12 His method does not provide even a close approxi-

mation of the perimeter or area of the desired square.
ia

Books on the Lullian art proliferated throughout the seven-

teenth century, many of them carrying inserted sheets of circles to

be cut out, or actual rotating circles with centers attached perma-

nently to the page. Wildly exaggerated claims were made for the

method. The German Jesuit Athanasius Kircher (1601-1680),

scientist, mathematician, cryptographer, and student of Egyptian

hieroglyphics, was also a confirmed Lullist. He published in Am-
sterdam in 1669 a huge tome of nearly 500 pages titled Ars magna
sciendi sive combinatoria. It abounds with Lullian figures and cir-

cles bearing ingenious pictographic symbols of his own devising.
14

The eighteenth century witnessed renewed opposition to Lull's

teachings in Majorca and the publication of many Spanish books

and pamphlets either attacking or defending him. Benito Feyjoo,

in the second volume of his Cartas eruditas y curiosas ("Letters

erudite and curious"), ridiculed Lull's art so effectively that he

provoked a two-volume reply in 1749-1750 by the Cistercian

monk Antonio Raymundo Pasqual, a professor of philosophy at

the Lullian University of Majorca. This was followed in 1778 by

Pasqual's Vinciciae Lullianae, an important early biography and

defense of Lull. The nineteenth and twentieth centuries saw a

gradual decline of interest in the Art and a corresponding increase

of attention toward Lull as a poet and mystic. A periodical devoted

to Lullian studies, the Revista luliana, flourished from 1901 to

1905. Today there are many enthusiastic admirers of Lull in

Majorca and other parts of Spain, though the practice of his Art

has all but completely vanished.

The Church has approved Lull's beatification, but there seems

little likelihood he will ever be canonized. There are three principal

reasons. His books contain much that may be considered heretical.

His martyrdom seems to have been provoked by such rash behavior

that it takes on the coloration of a suicide. And finally, his in-

sistence on the divine origin of his Art and his constant emphasis
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on its indispensability as a tool for the conversion of infidels lends

a touch of madness, certainly of the fantastic, to Lull's personality.

Lull himself was fully aware that his life was a fantastic one. He
even wrote a book called The Dispute of a Cleric and Ramon the

Fantastic in which he and a priest each try to prove that the other

has had the most preposterous life. At other times he speaks of

himself as "Ramon the Fool." He was indeed a Spanish joglar of

the faith, a troubadour who sang his passionate love songs to his

Beloved and twirled his colored circles as a juggler twirls his col-

ored plates, more to the amusement or annoyance of his country-
men than to their edification. No one need regret that the contro-

versy over his Great Art has at last been laid to rest and that the

world is free to admire Lull as the first great writer in the Catalan

tongue, and a religious eccentric unique in medieval Spanish his-

tory.
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proximation to the side of a square
with an area equal to the area of

the circle.

14. Kircher's enormous books are fas-

cinating mixtures of science and
nonsense. He seems to have antic-

ipated motion pictures by construct-

ing a magic lantern that threw
'9Ure '

images on a screen in fairly rapid
succession to illustrate such events

as the ascension of Christ. He invented (as did Leibnitz) an early calculating
machine. On the other hand, he devoted a 250-page treatise to details in the
construction of Noah's Ark!

\
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Kircher's work on the Lullian art appeared three years after Leibnitz's

youthful treatise of similar title (see reference 1). Leibnitz later wrote that

he had hoped to find important matters discussed in Kircher's book but was

disappointed to discover that it "had merely revived the Lullian art or some-

thing similar to it, but that the author had not even dreamed of the true

analysis of human thoughts." (Vol. 1, p. 352, of the edition of Leibnitz's

papers and letters cited in reference 1.)



2: Logic Diagrams

A logic diagram is a two-dimensional geo-

metric figure with spatial relations that are isomorphic with the

structure of a logical statement. These spatial relations are usually

of a topological character, which is not surprising in view of the

fact that logic relations are the primitive relations underlying all

deductive reasoning and topological properties are, in a sense, the

most fundamental properties of spatial structures. Logic diagrams
stand in the same relation to logical algebras as the graphs of

curves stand in relation to their algebraic formulas; they are simply
other ways of symbolizing the same basic structure.

There has always been, and continues to be, a curious tendency

among certain logicians to peer down their noses at logic dia-

grams as though they were barbaric attempts to picture a structure

more appropriately represented by words or notational symbols.

One might as well look upon the graph of a parabola as somehow
of a lower status than the algebraic equation that produces it.

Clearly, the parabola and its formula are simply two different ways
of asserting the same thing. The parabola is a spatial way of

representing an equation; the equation is an algebraic expression

of a parabola. It would be foolish to ask which of the two, con-

sidered in itself, is superior to the other. Each has its uses, and it is

only in reference to human purposes that we can speak of their

relative merits or defects.

In logic, a good diagram has several virtues. Many individuals

think with far greater ease when they can visualize an argument

28
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pictorially, and a diagram often makes clear to them a matter

which they might have difficulty grasping in verbal or algebraic
form. For this reason, logic diagrams are extremely valuable

pedagogic devices. Moreover, a good diagrammatic method is

capable of solving certain logic problems in the same efficient way
that a graph may be used for the solution of certain equations.
True algebraic methods of dealing with logic problems are usually
faster and more reliable, but this is not always the case, and even

when it is, the diagram affords a convenient technique for checking
results obtained by other means. Finally, the study of logic dia-

grams is an intensely interesting and relatively unexplored field. It

is closely allied with the rapidly growing subject of topology, and

its kinship with the network theory underlying the construction of

electronic calculators and other automata suggests that it may
have contributions to make in the near future that will be much
more than trivial or recreational.

Historically, the first logic diagrams probably expressed state-

ments in what today is called the logic of relations. Thejreejigure,
for example, was certainly known to Aristotle as a handy way of

picturing successive subdivisions of matter and form, or genera and

species. The so-called tree of Porphyry, so often found in medieval

and Renaissance logics, is one example of this type of diagram. In

the previous chapter we spoke of Lull's fondness for the tree de-

vice, and its useful application today in depicting such structures

as the evolutionary history of plants and animals. The genealogi-

cal family tree (actually an interlocking of many separate tree

figures) is another example. Drawing such a tree is often the

quickest and easiest way to determine a relationship between two

people, another way of saying that it is a useful tool for solving a

certain type of logic problem.

Statements involving transitive asymmetric relations, such as

"taller than," "heavier than," "to the left of," and so on, are so

easily diagramed that the technique must have been a familiar one

to the ancients, certainly so obvious as to be of little interest to us

here. Likewise, we may pass quickly over such popular medieval

devices as the various "squares of opposition" (for showing certain

relations of immediate inference from one class proposition to

another) as well as the "pons asinorum" of Petrus Tartaretus. The

latter is a geometrical method of finding the middle terms of an
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argument. Jean Buridan, the fourteenth century French nominalist,

was much concerned in his logical writings with finding middle

terms, and his method became known as a "pons asinorum"

("bridge of asses") because it helped dull-witted students pass over

from the major and minor terms to the middle ones. The phrase

later became attached to the elaborate hexagonal figure that appar-

ently first appeared in a fifteenth century work on logic by Petrus

Tartaretus. (The interested reader will find the figure reproduced
and explained in Karl Prantl's Geschichte der Logik im Abendlande,

Leipzig, 1855-1870, Vol. 4, p. 206.) In later centuries, pons asi-

norum became a common phrase for Euclid's fifth proposition

proving the base angles of an isosceles triangle to be equal, a bridge

that only stupid students had difficulty in crossing.

On a slightly higher "iconic" level (Charles Peirce's term for the

resemblance of a sign to the thing it signifies) are the three dia-

grams pictured in Figure 1 6. These are designed to exhibit the rela-

CONCLUSION ^'"" "

CONCLUSION
CONCLUSION

Figure 16.

tions between terms in the first three figures of a syllogism. Wil-

liam Hamilton, in Discussions on Philosophy and Literature, 1866,

p. 666, traces their origin back to the fifth century of the Christian

era. They are to be found in Lull's logical works and innumerable

other medieval treatises. Giordano Bruno, in a commentary on

Lull's system, superimposes the three figures and surrounds them

with a circle to obtain the mysterious

diagram shown in Figure 17. Beyond

showing that the conclusion of a syllo-

gism expresses a relation between two

terms that is obtained by traversing an-

other route that leads through a middle

term, these figures have almost no iconic

value and need not detain us further.

The first important step toward

Figure 17. a diagrammatic method sufficiently
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iconic to be serviceable as a tool for solving problems of class

logic was the use of a simple closed curve to represent a class.

We have seen how Lull employed four intersecting circles to show

that existence possesses the transcendental predicates of truth,

goodness, and unity. The use of three intersecting circles to illus-

trate the unity of the three parts of the godhead was also a com-

mon medieval figure. It is difficult to say who was the first to use

a circle for representing actual class propositions and syllogisms.

Alonzo Church, in his contribution to the section on logic in the

fourteenth edition of the Encyclopaedia Britannica, mentions the

early use of circles for this purpose by Johann Christoph Sturm (in

his Universalia Euclidea, 1661), Leibnitz, and Johann Christian

Lange (in his Nucleus logicae Weisianae, 1712). There is no

doubt, however, that it was Leonhard Euler, the brilliant Swiss

mathematician, who was responsible for introducing them into the

history of logical analysis. He first described them in seven letters,

the earliest written in 1761, and all printed in his Lettres a une

princesse d'Allemagne, Vol. 2, 1772, letters 102 to 108. Here for

the first time we meet with a geometrical system that will not only

represent class statements and syllogisms in a highly isomorphic

manner, but also can be manipulated for the actual solution of

problems in class logic.

Euler's method will not be explained here because it has been

supplanted by the much more efficient method developed by the

English logician John Venn (1834-1923), lecturer in the moral

sciences, Cambridge University. Venn's Symbolic Logic, revised

second edition, 1894, may be consulted for a clear exposition of

Euler's system as well as an analysis of its defects. In the last chap-

ter of Venn's book one will also find a compact survey of the his-

tory of class logic diagrams, a survey from which much of the

foregoing data have been drawn. This chapter may also be con-

sulted for interesting anticipations of Euler's system, as well as

later variations that employ triangles, squares, and other parallelo-

grams. Since class inclusion is not concerned with numerical

quantity, any closed curve topologically equivalent to a circle can

be used. Of special interest is a linear method of diagraming, closely

allied to the Euler circles, that was developed by Euler's contem-

porary, the German mathematician Johann Heinrich Lambert, and

explained in his Neues Organon, 1764. 1
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All these methods, including Euler's, had severe limitations.

They were elegantly overcome by Venn's system of intersecting

circles, which explains why they have dropped into such complete
oblivion. Venn first published his method in an article, "On the

Diagrammatic and Mechanical Representation of Propositions and

Reasonings," Philosophical Magazine, July, 1880. The technique is

discussed more fully in his book cited above.

There are several aspects of the "Venn circles" that will be of

interest to consider in this chapter, but before doing so it will be

expedient to digress for a moment and consider briefly the nature

of the syllogism. This discussion will have an important bearing

on much that follows, as well as make it easier to understand the

syllogism-solving machines to be described in later chapters.

Although Aristotle defined the syllogism broadly as any formal

argument in which the conclusion follows necessarily from the

premises, his own analysis centers on a very specific type of argu-

ment. He had observed that statements often took a subject-predi-

cate form with the subject preceded by such qualifying adjectives

as "all," "some," "none." The four most common statements of this

type, traditionally labeled A, E, I, and O, are:

A All 5 is P (universal affirmative)

E No 5 is P (universal negative)

/ Some S is P (particular affirmative)

O Some S is not P (particular negative)

Aristotle further observed that a statement of this sort could be

correctly inferred from two statements of similar form, one relat-

ing the subject (5) of the conclusion to a "middle term" (M), the

other relating the middle term to the predicate (P) of the conclu-

sion. For example:

AllM is P
All 5 is M
All S is P

It was this specific type of "mediate inference" by way of a mid-

dle term that Aristotle was the first to dissect and analyze, and to

which the term "syllogism" soon became firmly attached. Aristotle's

way of classifying syllogisms was to divide them into three "figures"

depending on the "width" or "extension" of the middle term (i.e.,
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whether it concerned all or part of its class) as compared with the

width of the other terms. Later logicians, classifying syllogisms by
the position of the middle term, added a fourth figure. Each figure

in turn was divided into "moods," each mood being a different com-

bination of the four basic statements. The syllogism cited above is

in the mood AAA of the first figure. Medieval logicians gave a

mnemonic name to each valid syllogism, the vowels of the name

corresponding to the three assertions of the syllogism. In this case

the mnemonic name is Barbara.

If we assume that every term in a syllogism stands for a class

that actually has members (e.g., when a premise asserts that "All

unicorns have only one horn," we must assume that there are such

things as unicorns), then 24 of the 256 combinations are valid

inferences. Only 15 are valid if we adopt the narrower view that

a class qualified by "all" or "none" may be "empty"; that is, it may
or may not have members.

It is true of course that Aristotle and his medieval followers

greatly exaggerated the importance of the syllogism. In the light of

modern symbolic logic we now see it as a restricted form of class-

inclusion inference seldom encountered in everyday thought or

speech. The following quotation from Bertrand Russell's An Out-

line of Philosophy, 1927, is a well-known expression of the disdain

a modern logician feels for this ancient logical form:

This form of inference does actually occur, though very rarely. The only

instance I have ever heard of was supplied by Dr. F. C. S. Schiller. He once

produced a comic number of the philosophical periodical Mind, and sent

copies to various philosophers, among others to a certain German, who was

much puzzled by the advertisements. But at last he argued: "Everything in

this book is a joke, therefore the advertisements are jokes." I have never

come across any other case of new knowledge obtained by means of a

syllogism. It must be admitted that, for a method which dominated logic for

two thousand years, this contribution to the world's stock of information

cannot be considered very weighty.

In the confused period that followed the Renaissance break with

the logic of the schoolmen, and before Boole and others cleared

the way for the development of symbolic logic, it was natural that

logicians would make every conceivable attempt to reconstruct

the syllogism or extend it to cover new forms of inference. Francis

Bacon spoke of the syllogism as having "been beaten over and over
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by the subtlest labors of men's wits." Now it came in for another

round of drubbing until it was almost pounded out of recognizable

shape. What was needed, of course, was a broader point of view

and an adequate system of symbolic notation. But until these

needs were met, logicians expended an incredible amount of energy
in verbal experimentation and argument. Perhaps these were

necessary preliminaries to algebraic analysis, but looking back on

them now they seem, especially the labors of the nineteenth cen-

tury German metaphysicians, trivial and often hilarious.

Christoph von Sigwart, for instance, thought that syllogisms

should be expressed in a hypothetical form: If anything is M it is

P; if anything is 5 it is M; therefore if anything is 5 it is P. Franz

Brentano's "existential syllogism" put all affirmative statements into

a negative form: There is not a not-mortal human; there is not a not-

human Socrates; therefore there is not a not-mortal Socrates. Wil-

helm Schuppe decided that Aristotle was mistaken when he said that

no conclusion could be derived from two negative premises. For can

we not reason: No M is P; no 5 is M; therefore neither 5 nor M is

P? And if that didn't prove the point, Schuppe had another exam-

ple: No M is P; no 5 is M; therefore S may be P. Of course S may
be P even without the premises, and in either case it may also not

be P. Nevertheless we can say for certain that we cannot say for

certain anything about the relation of S to P. Schuppe felt that this

should be recognized as a kind of conclusion.

Schuppe also believed, contrary to traditional rules, that a con-

clusion could be obtained from two particular premises. Thus:
Some M is P; some S is M; therefore some 5 may be P. Another

Schuppe syllogism, much discussed by European logicians in his

day, ran: All P is M; all S is M; therefore S is in some respect simi-

lar to P. What Schuppe meant was that S and P have in common the

fact that both of them have certain attributes of M. If all dimes are

round and all wheels are round, then wheels and dimes are similar

in their roundness. One would have thought that only the German
philosophers would be impressed by this discovery; nevertheless

in England the great Bosanquet thought highly of it.

The most famous of these endless attempts to reshape or enlarge
the Aristotelian syllogism was the "quantification of the predicate"

by the Scottish philosopher Sir William Hamilton (1788-1856),
Hamilton correctly perceived, as Leibnitz and many others had
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before him, that the predicate term in each of Aristotle's four basic

assertions (A,E,I,O) is ambiguous in the sense that it does not tell

us whether we are concerned with all or part of the predicate. Why
not, Hamilton asked himself, increase the precision of these four

statements by quantifying their predicates? In other words, for the

ambiguous "All 5 is P" we substitute the two fully quantified asser-

tions, "All 5 is all P" and "All 5 is some P." The old logic would

treat "All men are mortal" and "All men are featherless bipeds"
as identical in form; whereas in the new system we see at once that

the first statement is an example of "All S is some P (all men are

some mortals) and the second is an example of "All 5 is all P" (all

men are all featherless bipeds). Since each of the four traditional

statements can be replaced by two with quantified predicates, we
have eight basic propositions out of which to construct syllogisms.

They combine to form 512 possible moods of which 108 prove
to be valid.

Let us say at once that there is no reason at all why the predi-

cate should not be quantified. The trouble is that in doing so we
are beginning to break so completely with the way in which com-

mon speech expresses class relations that, unless we develop a

really complete and precise system of notation, we find ourselves

forced to employ words in a clumsy and barbarous way. This

was one of the criticisms of Hamilton's system voiced by his con-

temporary, the English mathematician Augustus De Morgan
(1806-1871). De Morgan found among Hamilton's valid moods

a syllogism with such cloudy phrasing that it seemed to assert that

all men who were not lawyers were made of stone. De Morgan
dubbed it the "Gorgon syllogism" and there was much heated

British debate about it on the part of pro and anti Hamiltonians.

Hamilton attempted to remedy the obscurity of his phrasing by

devising a curious system of notation that should be mentioned

here because it has the superficial appearance of a diagram. Actu-

ally, there is no attempt to find a spatial analogue of classes. The

system consists only of symbols with agreed-upon meanings, and

rather cumbersome symbols at that in spite of Hamilton's own

opinion that they were "easy, simple, compendious, all-sufficient,

consistent, manifest, precise, and complete." The system employed
the English C and the Greek capital gamma (each the third letter

in its alphabet) for the two terms of the conclusion, and M for the
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middle term of the premises. The affirmative copula ("is" or
u
are")

is a wedge-shaped line with its thick end toward the subject. It

can be made negative by a vertical line crossing it at the center. A
colon is used to signify a distributed (universal)

:r
term, a comma to signify an undistributed (par-

Figure is. ticular) term. As an example, Figure 18 shows

how Hamilton recorded the syllogism Barbara.

Hamilton also used his wedge-shaped marks to form triangular

designs representing the three Aristotelian figures, superimposing
them to produce a pattern (Figure 19) even more mysterious than

c, :M
'

Figure 19.

Bruno's similar effort. The outside triangle, with boundary lines of

even width, represents Hamilton's "unfigured syllogism." This

was another of the Scottish philosopher's innovations. By transform-

ing the phrasing of any valid syllogism with quantified predicates,

he was able to express it in statements of equality. For example:

All men and some mortals are equal.

Socrates and some (in this case, one) men are equal.

Socrates and some (one) mortals are equal.

Some logicians are of the opinion that this was Hamilton's only

significant contribution to logic, because it suggested that logical

statements might be reduced to something analogous to algebraic

equations and so gave encouragement to those who were seeking
a suitable algebraic notation. Unfortunately, Hamilton failed to
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comprehend even the most elementary mathematical concepts, and

although his logical system has a neat verbal symmetry, it proved
to be virtually useless in practice.

2 In common speech, for instance,

if one says "Some of Picasso's paintings are mediocre,'
1

one does not

want to quantify the predicate, it being obvious that there are

other mediocre things that are not paintings by Picasso. It is one

of the peculiar virtues of the traditional system that it is constructed

from intentionally ambiguous statements such as occur in common
discourse, whereas in Hamilton's system, to make a statement with

an ambiguous predicate becomes an exceedingly complicated mat-

ter.

De Morgan also quantified the predicate in a system even more

elaborate than Hamilton's. By allowing subject and predicate terms

to have both positive and negative forms, he arrived at thirty-two

basic statements, though many of them are merely different ways
of saying the same thing. Hamilton accused De Morgan of plagiar-

ism, and for many years the two men argued with each other in

books and magazine articles perhaps the bitterest and funniest

debate about formal logic since the time of the schoolmen, though
most of the humor as well as insight was on the side of De Morgan.

They fought, De Morgan once recalled, like a cat and dog, "one

dogmatical, the other categorical." De Morgan always maintained

that he deliberately softened his verbal fire because of Hamilton's

ill health, though at times he suspected that replying to Hamilton

in the same abusive tone Hamilton employed might have given the

ailing metaphysician a beneficial shot in the arm.

De Morgan's many contributions to logic, owing to his mathe-

matical skill, proved more fruitful than Hamilton's, though not so

fruitful as the work of Boole. In his Budget of Paradoxes, Book I,

pp. 333 ff., De Morgan summarized his work under six heads, each

propounding a new type of syllogism relative, undecided, ex-

emplar, numerical, onzymatic, and transposed. His example of a

relative syllogism is: X is the brother of Y; X is not the uncle of Z;

therefore Z is not the child of Y. An undecided syllogism: some

men are not capable of tracing consequences; we cannot be sure

that there are beings responsible for consequences who are in-

capable of tracing consequences; therefore we cannot be sure that

all men are responsible for the consequences of their actions. The

term "exemplar" refers, De Morgan writes, to a system he worked
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out for the purpose of correcting defects in Hamilton's logic, but

which turned out to be the same as Aristotle's.

De Morgan's numerical syllogism is of special interest because

it shows how easily traditional class logic slides over into arith-

metic. He gives two examples, the first of which is: most Y's are

X's; most Y's are Z's; therefore some As are Z's. The second ex-

ample presupposes that 100 Y's exist. We can now reason: 70 -Y's

are Y's; 40 Z's are Y's; therefore at least 10 A"s are Z's. Boole,

Jevons, and many other pioneers of modern logic discussed syl-

logisms of this type at considerable length.
8

"Onzymatic" refers to

De Morgan's expansion of the Aristotelian system by the use of

negative terms and quantified predicates (see his Syllabus of a

Proposed System of Logic, 1860). As an example of a transposed

syllogism he cites: some AT's are not Y's; for every X there is a Y
which is Z; therefore some Z's are not JTs.

The initial letters of the names of these six new varieties of

syllogism, De Morgan points out, can be arranged to spell
uRue

not!" indicating his unrepentance for having invented them. He

adds, however, that followers of the old logic can take comfort

from the fact that the same letters can be transposed to spell "True?

No!"

All these strange forms and extensions of the syllogism so far

mentioned (and they are but a fraction of the pseudo-syllogisms

proposed by various logicians of the last century) are of little in-

terest to a modern logician. They were courageous verbal attempts

to extend the domain of formal logic beyond its traditional bound-

aries, but from the standpoint of modern symbolic logic they ap-

pear obvious and uninteresting. Some are merely new verbal ways
of making an old assertion, like saying that 8 minus 3 equals 5 in-

stead of saying 5 plus 3 equals 8. Others put into a syllogistic

form a type of inference quite different from that involved in an

Aristotelian syllogism. Such forms may be perfectly valid but they

no more constitute a criticism or reform of the traditional syllogism

than the theorems of non-Euclidean geometry can be said to criti-

cize or reform the Pythagorean theorem. We now know that

Aristotle's syllogism is only one of an infinite variety of forms of

inference, but within its own domain it does exactly what it is sup-

posed to do. Leibnitz thought it was "one of the most beautiful

inventions of the human spirit," and there is no reason why a
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logician today need disagree, even though he finds the syllogism's

structure no longer a field for further exploration.
It was of course the development of an adequate symbolic nota-

tion that reduced the syllogism to triviality and rendered obsolete

all the quasi-syllogisms that had been so painfully and exhaustively

analyzed by the nineteenth century logicians. At the same time,

many a controversy that once seemed important no longer seemed

so. Few logicians care today whether a syllogism is or is not re-

duced to the first figure, or whether we should recognize three

figures or four. Perhaps one reason why these old issues faded so

quickly was that, shortly after Boole laid the foundations for an

algebraic notation, John Venn came forth with an ingenious im-

provement on Euler's circles. The result was a diagrammatic
method so perfectly isomorphic with the Boolean class algebra, and

picturing the structure of class logic with such visual clarity, that

even a nonmathematically minded philosopher could "see" what

the new logic was all about.

To understand exactly how Venn's method works, let us apply it

first to a syllogism. We begin by drawing three circles that inter-

sect like the trade-mark of Ballantine's ale (Figure 20). The

circles are labeled 5 (subject), M (middle term), and P (predi-

cate). All the points inside circle 5 are regarded as members of

class S. All points outside the same circle are regarded as not-5.

(In this book we shall adopt the convention of symbolizing a nega-

tion by placing a ^ before the term: ^ S.) The same applies to

the other circles. As we see by inspection, the circles overlap in such

a way that, if we label each compartment with appropriate letters

to indicate its members, we shall have a compartment for every

possible three-term combination of the three letters and their nega-

tions (Figure 21). The region outside all three circles will repre-

sent the region of ^ S ~ M ^ P, or all those things that are not

members of any of the three classes singled out for consideration.

The following conventions must be adopted. If we wish to show

that a compartment is empty (has no members) we shade it. If we

wish to show that it has members, we place a small X inside it. If

we do not know whether an X belongs in one compartment or an

adjacent one, we put it on the border between the two areas.

Let us now diagram the premise "All 5 is M." We interpret this

to mean that the class of things which are 5 and ^ M is empty;
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Figure 21.

therefore we shade all compartments in which we find these two

terms (Figure 22).

Our second premise, let us say, is "No M is P." This clearly as-

serts that all compartments containing the combination MP are

empty. So we shade the diagram further, as shown in Figure 23.

At this point we must inspect the circles to see if we can draw

a valid conclusion concerning the relation of S to P. We can. All

areas containing both 5 and P are empty; hence we conclude "No
5 is P." If we assume that S is not an empty class, we may also

conclude (since only one compartment in S is not shaded) that

"Some 5 is not P." (This is called a "weak" conclusion because

it may be derived by immediate inference from a universal or

"stronger" conclusion, "No 5 is P.")

One more illustration is needed to make clear how particular

premises are handled. "Some 5 is M" requires an X on the border

of the P circle as shown in Figure 24, because we do not know
which of the two compartments (or perhaps both) may have mem-
bers. If our next premise is "All M is P" it will eliminate one of

these compartments, allowing us to shift the X to the non-empty
area as shown in Figure 25. Inspection now reveals that from the

two premises we may validly conclude that "Some S is P."

Figure 22. Figure 23. Figure 24.
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What we have been doing, in a sense, is to translate the verbal

symbols of a syllogism into a problem of topology. Each circle is

a closed curve, and according to the "Jordan theorem" of topology
a closed curve must divide all points on the plane into those which

are inside and those which are outside the curve. The points inside

each circle constitute a distinct "set" or "class" of points. We thus

have a simple geometrical model by means of which we can show

exactly which points lie within or without a given set. The ques-
tion now arises, do the topological laws involved here underlie the

logic of class inclusion, or do the laws of class inclusion underlie

the topological laws? It is clearly a verbal question. Neither under-

lies the other. We have in the Venn circles and in the syntax of a

syllogism two different ways of symbolizing the same structure

one grammatical, the other geometrical. Neither, as Peirce ex-

presses it, is "the cause or principle of the other."

A word or two now about how the circles may be used for

showing class propositions linked by a disjunctive ("or") relation.

Suppose we wish to say that all X is either Y or Z, taking "or" in

Figure 27. Figure 28.

the inclusive sense of "either or both." Figure 26 shows how simply

this is done. To change this to an "exclusive" disjunction ("either

but not both") we have only to shade the central area as shown in

Figure 27. More complex disjunctive statements, jointly asserted,

require -other stratagems. Peirce suggested (Collected Papers,

Vol. 4, pp. 307ff.) a simple way that this could be done. It in-

volves the use of X's and O's to stand for presence or absence of

members, then connecting them by a line to indicate disjunction.

For example, Figure 28 shows how Peirce diagramed the state-

ment "Either all S is P or some P is not-S, and either no S is P or

no not-S is not-P."

Hypothetical class statements such as "If all A is B then all B

is C," and other types of compound statements, do not readily

admit of diagraming. The best procedure seems to be, following
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another suggestion of Peirce's (op. cit., p. 315), to draw Venn dia-

grams of Venn diagrams. We shall see how this is done when we
consider, later in the chapter, the use of the Venn circles for de-

picting truth-value statements in the propositional calculus.

It is interesting to note that, by changing at least one of the cir-

cles to a rectangle, the Venn diagram easily takes care of numerical

syllogisms in which terms are quantified by "most" or by numbers.

Figure 29 shows how one can diagram the syllogism: there are ten

Figure 29.

X's of which four are #'s; eight A's are Cs; therefore at least two
B's are C's. Some elementary problems of probability also lend

themselves to this type of diagram. Peirce suggested a different

method of using circles for problems involving numerically quanti-
fied classes (op. cit., p. 315), but his proposal is more notational

than diagrammatic.
One of the merits of the Venn system is that it can be extended

in principle to take care of any number of terms. The simplest way
to provide for four terms is to use ellipses as shown in Figure 30

(it being impossible to make four circles intersect on a plane in the

desired manner). The following problem, taken from Venn's Sym-
bolic Logic, will suffice to indicate the scope and power of the

method.

Every Y is either X and not Z, or Z and not X.

Every WY is either both X and Z or neither of the two.

All XY is either W or Z, and all YZ is either X or W.

If we diagram these statements properly, as shown in Figure 3 1
,

we see at once the surprising conclusion. The premises make it im-

possible for any Y to exist.

As the number of terms increases, the diagram of course be-

comes more involved. It is possible to draw any number of closed
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curves that intersect in the necessary manner, but beyond four it is

difficult to devise diagrams that permit the eye to grasp quickly the

spots that are inside or outside a given curve. The more terms in-

volved, the more peculiar become the shapes of the curves.
4 For

five terms, Venn proposed the diagram shown in Figure 32. This

has, however, the defect of giving class Z the shape of a doughnut,
the small ellipse in the center being outside Z but inside W and Y,

Beyond five terms, Venn thought it best to abandon hope of keep-

Figure 30. Figure 31. Figure 32.

ing all parts of one class within a closed curve, and simply to di-

vide a rectangle into the desired number of subcompartments,

labeling each with a different combination of the terms.

The first published suggestion for a rectangular graph of this

sort was an article titled "A Logical Diagram for n Terms," by
Allan Marquand, then a fellow at Johns Hopkins University. It ap-

peared in the Philosophical Magazine, Vol. 12, October, 1881, p.

266. As we shall see in Chapter 6, Marquand also made use of

this graph in the construction of his logic machine. Figure 33

pictures a Marquand graph for six terms. The square marked X
indicates the class ^ AB C ^DEF. By shading areas asserted

empty, and marking with an X the areas known to have members,

problems involving six terms can be solved in the same manner as

with Venn circles. This type of graph, like Lambert's system of

linear diagraming, lies on the border line between a highly iconic

system such as Venn's, and a noniconic system of notation. It re-

minds us that there is no sharp line separating symbolic notation

from a diagram. Even algebraic notation is in some degree iconic,

if only in the fact that single symbols stand for single terms, and

even the most iconic diagram must make use of some conventions

of a noniconic nature.
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Figure 33.

Other types of graphs capable of extension to n terms have been

proposed. Alexander Macfarlane, a professor of physics at the

University of Texas, abandoned the square graph for a long nar-

row strip subdivided as shown in Figure 34. Macfarlane called

this a "logical spectrum." Null classes are indicated by gray shad-

ing. Compartments excluded by the premises are shaded black.

AAAAAAAA
p MD D MD P *vD p MD P M3 D ^D D MD p

ABCD

Figure 34.
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Indeterminate classes are indicated by shading half the compart-
ment black. The system was first explained in an article titled "The

Logical Spectrum "Philosophical Magazine, Vol. 19, 1885, p. 286.

In the Proceedings of the American Association for the Advance-
ment of Science, Vol. 39, 1890, p. 51, in a paper titled "Adaptation
of the Method of the Logical Spectrum to Boole's Problem," Mac-
farlane showed how easily his diagram solved an involved problem
posed by Boole on p. 146 of his Laws of Thought.
A method of dividing a square, somewhat different from Mar-

quand's, was proposed by William J. Newlin, of Amherst College,
in an article titled "A New Logical Diagram," Journal of Philos-

ophy, Psychology, and Scientific Methods, Vol. 3, Sept. 13, 1906,

p. 539. Still another rectangular method was suggested by the dis-

tinguished Harvard philosopher William S. Hocking in one of his

rare moments of concern with formal logic. Hocking's paper, "Two
Extensions of the Use of Graphs in Elementary Logic," appeared in

the University of California Publications in Philosophy, Vol. 2, No.

2, 1909, p. 31.

Another interesting Marquand-type graph, using colored count-

ers to indicate presence or absence of class members, was invented

by Lewis Carroll and first explained in his delightfully written little

book, The Game of Logic, 1886. The game, Carroll tells us in his

preface, requires one player at least. Purchasers of the book also

received an envelope containing a card with Carroll's diagram, to be

used as a board for the game, and nine cardboard counters (four

red and five gray), This card is reproduced in Figure 35.

The large square on the card is so divided that its areas repre-

sent all three-term combinations of X, Y, M and their negations

(Carroll adopts the convention of using an apostrophe to indicate

negation). The upper half of this square is X; the lower half is Xf

(not-JST) . The left side of the square is Y, the right side Y'. M (the

middle term, for Carroll is here concerned only with the syllogism)

is indicated by the space inside the interior square. M r

is the area

between this inner square and the outer border of the dia-

gram.

To diagram the premises of a syllogism we simply mark the ap-

propriate compartments with counters a red counter for spaces

known to contain members, a gray counter for spaces known to be

empty. If we know that at least one of two adjacent compartments
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has members, but are not sure which one, the red counter is placed

on the border between the two areas. After we have suitably

marked the graph in accord with our premises, inspection of the

diagram will give us the conclusion, if any, that we may reach

Figure 35. Reproduction of the board used in playing Lewis Carroll's logic game.

concerning the relation of X to Y. The smaller square in the

lower right corner of the card is used merely for recording the con-

clusion.

Carroll's diagram, like that of Venn and the various extensions

of Venn's method, easily takes care of syllogisms with mixtures of

positive and negative forms of the same term. In traditional logic

such statements would have to be rephrased to arrive at a valid
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syllogistic form. For example, consider the following typically
Carrollian problem:

All teetotalers like sugar.
No nightingale drinks wine.

If we substitute letters for the terms we have:

All M are X
No Y is not-M

By placing the counters according to Carroll's conventions, we

quickly discover that we may draw the valid conclusion "No Y
is not-Af" or "No nightingale dislikes sugar." Carroll himself points
out that traditional logicians would not admit this to be a valid

syllogism (although as we have seen, De Morgan and others in-

cluded such forms in their expansions of the traditional logic).

"They have a sort of nervous dread," Carroll writes, "of Attri-

butes beginning with a negative particle. . . . And thus, having
(from sheer nervousness) excluded a quantity of very useful forms,

they have made rules which, though quite applicable to the few
forms which they allow of, are of no use at all when you consider

all possible forms."

"Let us not quarrel with them, dear Reader!" Carroll continues.

"There is room enough in the world for both of us. Let us quietly
take our broader system: and, if they choose to shut their eyes to

all these useful forms, and to say 'They are not Syllogisms at all!'

we can but stand aside, and let them Rush upon their Fate!"

In a later book, Symbolic Logic, 1896 (reissued in 1955 by

Berkeley Enterprises, Inc.), Carroll explained his diagrammatic
method in greater detail, distinguishing it from the systems of Euler

and Venn in the following characteristic manner:

My Method of Diagrams resembles Mr. Venn's, in having separate Com-

partments assigned to the various Classes, and in marking these Compart-
ments as occupied or as empty; but it differs from his Method, in assigning

a closed area to the Universe of Discourse, so that the Class which, under

Mr. Venn's liberal sway, has been ranging at will through Infinite Space, is

suddenly dismayed to find itself "cabin'd, cribb'd, confined," in a limited

Cell like any other Class!

Apparently Carroll was not familiar with Marquand's earlier

proposed diagram, because it likewise assigns a closed area to the
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region outside of the classes under consideration. Carroll's graph,
also like Marquand's, can be extended to n terms. Symbolic Logic

pictures a number of these extensions, including a 256-cell graph
for eight terms. The frontispiece of this book, reproduced in Figure

S>l?Hogism toorfcefo out.

{f)at jstorp of pours, about pour once meeting tfje

sea-serpent, alfoapa jseta me off Batoning;
$ ntber gaton, unUjss tofjm Fm listening to some-

ttjing lotallp toboto of intetest

Cijat istorp of pour*, about pour once meeting tf>e

t, i^ totallg bebottr of interest

Figure 36. Frontispiece of Lewis Carroll's Symbo//c Logic, 1886.

36, shows how the counters are placed to solve a syllogism about
a sea-serpent story that induces yawning.

All the foregoing methods of diagraming class-inclusion logic
were developed before the modern truth-value prepositional calcu-

lus assumed its present form and importance. As we have seen, the

terms of class logic stand for classes. In the propositional calculus,
terms stand for statements (such as "It is raining") which may be
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regarded as true or false, and which are logically related by such

"connectives" as "and," "or," "not," "both," "if . . . then." The

question naturally arises, can these diagrams be used for solving

problems in the prepositional calculus? The answer is yes, as Venn
himself recognized though he did not elaborate the technique. In

fact, if the premises are not complicated by compound (paren-

thetical) assertions, the Venn diagrams can be used with surpris-

ing efficiency.

The prepositional calculus first arose, it is worth recalling, as

an interpretation of the class calculus. The correspondence be-

tween the two calculi is so close that every class statement has a

corresponding prepositional form. For example, "All A is 5" can

be interpreted to mean, "If X is a member of class A, then X is a

member of class 5." Similarly, "If A is true then B is true" may be

interpreted to mean, "The class of all occasions on which A is true

is included in the class of occasions on which B is true." "If it

rains, I stay indoors," is a truth-value assertion. But if I say the

same thing differently, "All rainy days are days when I stay in-

doors," it becomes a class statement. Every statement in truth-

function logic has a similar class analogue. As the diagraming of

these statements will make clear, they are simply different verbal

ways of stating the same underlying logical structure.

To use the Venn circles for propositional logic we must first

interpret them in a different way. Each circle now stands for a

proposition which may be either true or false, rather than a class

which may or may not have members. The labels on the various

compartments (Figure 37) indicate possible or impossible combi-

nations of true and false values of the respective terms. Just as we

formerly shaded a compartment to show that it had no members,

we now shade it to indicate that it is an impossible combination

of truth values. Conversely, an unshaded compartment indicates

a permissible combination. (Note in Figure 37 that the combina-

tion ~ A ~ B ~ C is shown as a small circle outside the other

three. This is done to simplify the shading, when necessary, of this

area. )

If we wish to show that A is true, we shade all compartments

containing A (Figure 38). To show that A is false, we shade

all areas containing A (Figure 39) .

A and ~ A are of course negations of each other. Their dia-
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grams are like positive and negative prints; to change from one to

the other we have only to exchange black and white areas. This

is one of the delightful features of the method. The diagram of

any truth-value assertion can be converted to its negation by fol-

lowing this simple procedure.

Let us see how we go about depicting a statement of implica-

tion, "If A is true, then B is true" (symbolized as A D B). A truth

table for this relation tells us there are four possible true and false

combinations (TT, TF, FT, and FF) of which only the combina-

tion TF is invalid. Hence we eliminate all compartments containing
A ~ B. The result (shown in Figure 40) is, as we would expect, a

diagram identical with the diagram for the class statement, "All A
is B."

The nature of "material implication" is easily explained by this

figure. If we add to it the statement that A is false (by shading all

unshaded areas containing A) it will appear as in Figure 39.

The white areas in this diagram tell us that B may be either true

or false. In other words, a false proposition "implies" any propo-
sition, true or false. On the other hand, if we make A true (Figure
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41 ), we see immediately that B must be true. Any true proposition,

therefore, implies any other true one.

Figure 42 introduces the notational symbols that will be used

throughout this book for all binary (two-term) truth-value rela-

tions for which there are commonly used symbols. The diagram
for each relation is shown on the left. On the right is the "nega-
tive" diagram for the negation of each relation.

To apply these diagrams to relations between B and C, we have

only to rotate the page until the A and B circles correspond to the

positions of the B and C circles. In the same way we can turn the

page to bring the A and B circles to the positions of C and A . After

we work with the diagrams for a while, the patterns are soon mem-
orized and problems involving no more than three terms can be

solved with great speed. After a time, elementary problems of this

sort can even be solved in the head. One has only to form a mental

picture of the circles, then perform on them the necessary shadings.

Both Venn and Carroll, incidentally, wrote of the ease with which

they learned to solve logic problems mentally by their respective

methods, just as an expert abacus operator can move the beads in

a mental image of an abacus, or a chess master can play a game of

chess blindfolded. Using the circles mentally is, of course, much
easier than blindfold chess or abacus operation.

Tautologous or equivalent statements are rendered visually ob-

vious by the circles. For example, we make separate diagrams for

the following two assertions:

A v~B
B D A

The two diagrams prove to be identical.

Let us now consider a simple three-term problem involving the

following premises:

A 3 B (A implies B)
B ^ C (Either B or C but not both)

A v C (Either A or C or both)

CDX (C implies A)

After shading the circles for the above assertions we are left with

the diagram shown in Figure 43. Only one compartment, AB ~ C,



NOTATION

Conjunction ("And")

= Implication ("If then ")

v Disjunction, alternation ("Either or or both")

$ Exclusive disjunction, non-equivalence ("Either or but not both
1

5 Equivalence ("If and only if then ")

| Non-conjunction ("Not both and )

^ Negation ("Not")

BINARY RELATION

A/X-~\B
A=>B

If A is true, then B is true

NEGATION

A is true and B is false

If B is true, then A is true B is true and A is false

Either A or B is true, or both Both A and B are false

If
Either A or B is true, but not both If and only if A is true, B is true

A and B cannot both be true

AB

Both A and B are true

If and only if A is true, B is true Either A or B is true, but not both

A>B

Both A and B are true

A|B

A and B cannot both be true

Figure 42.
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has not been eliminated. We are forced to conclude, therefore,

that, on the basis of the logical structure asserted by the four prem-
ises, A and B must be true and C false.

Four-term problems can be solved in the same manner on Venn's
four-term figure of intersecting ellipses. Problems with larger num-
bers of variables are best handled on

graphs such as those suggested by

Marquand, Carroll, and others, or
f { <) \

AB-C

else one can simply make a list of

all the combinations, then cross out

the invalid ones. (As we shall see in

Chapter 5, this was the method used

by Jevons, but of course it is not a

diagrammatic one.) After we have

eliminated all the invalid combinations, an inspection of the remain-

ing ones will give us all that can be validly inferred from the premises.

If, for instance, we find that term D is true in all the remaining com-

partments, then D must be true. If we find permissible combina-
tions containing both D and ~D, we know that D is undecided by
the premises and may be either true or false. If in performing our

eliminations we discover that all compartments become shaded, we
know that the last diagramed statement contradicts one of the pre-
vious ones, leading to an absurdity in which nothing can be said

about any of the terms. In view of the obvious classroom value of

this method of diagraming truth-value problems, it is surprising that

most logic textbooks confine their discussion of Venn circles en-

tirely to class logic and the syllogism.

A few remarks should be made about diagraming compound
statements with parentheses, such as: (A vfi) 3 (B v C). This as-

serts that if the relation "A v B" is a true relation then the relation

"B y C" must also be true.

How can this be shown on the Venn circles? We can of course

expand the statement by algebraic methods into a longer statement

without parentheses, then make our diagram; but if we do this, we

might as well proceed to use algebraic methods throughout. On the

other hand, there seems to be no simple way in which the state-

ment, as it stands, can be diagramed. The best procedure is prob-

ably to follow the suggestion Peirce made for handling parentheti-

cal statements in class logic to make separate Venn diagrams for
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the two relations inside of parentheses, then connect them with an-

other Venn diagram shaded to represent implication.

Figure 44 shows how this appears. The lower set of circles ex-

presses the relation of implication between the binary relations

expressed by the other two sets. This

lower set is shaded black because we

know the relation to be valid. Gray
is used for the other sets of circles

because we have no way of knowing
whether the relation each expresses

is valid or not. If in the course of

diagraming other premises we dis-

cover that, say, the relation expressed

by the upper left circles, "A v B" is

valid, we can then blacken the gray

area. If, however, we discover that

this relation is false, we must con-

vert the relation to its negation. As we have shown earlier, this

is done by blacking the white areas and erasing the shading in the

other areas.

A knowledge of the truth values of A and B, and in some cases

a knowledge of the truth value of one term only, is sufficient to tell

us whether the relation A v B is true or false. If, for example, we

learn that both terms are false, this clearly contradicts the relation

and so we must change it to its negation. If we learn that A is true,

this is all we need to know to be sure that the binary relation A v B
is true, for it will be true regardless of whether B is true or false.

The reader who desires to pursue this further will not find it difficult

to work out rules for handling any type of compound statement,

including statements that are mixtures of class and propositional as-

sertions. It also is possible to use closed curves and Marquand-type

graphs for diagraming certain types of multivalued logics, but if

there are more than three terms the diagram or graph becomes so

intricate that it ceases to be any sort of visual aid.

The American philosopher Charles Peirce (1839-1914), men-

tioned several times in this chapter, was deeply interested in logic

diagrams. In addition to his extension of Venn's method and an

early attempt at what he called an "entitative graph" (later dis-

carded; it was "haunted," Peirce confessed, by "aniconicity"), he
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finally worked out a comprehensive system by which he believed he

could give geometric expression to any conceivable assertion or

logical argument. Peirce called it his system of "existential graphs,"

the term "existential" referring to the graphs' power of depicting

any existing state of any aspect of any possible universe. His first

attempt to publish a description of the method was in 1897 when

he sent an article on the subject to The Monist magazine. The edi-

tor returned it on the ground that the system could probably bs

improved. Peirce was so annoyed by this rejection that in a paper
written six years later he went out of his way to note that he had not

yet found it necessary to make any fundamental alterations in his

original scheme. For the rest of his life Peirce regarded the existen-

tial graph as his most important contribution to logic; his chef-

d'oeuvre, he liked to call it. Some idea of how much store Peirce

set by this method can be gained from the following quotation:

"Diagrammatic reasoning is the only really fertile reasoning. If

logicians would only embrace this method, we should no longer

see attempts to base their science on the fragile foundations of meta-

physics or a psychology not based on logical theory; and there

would soon be such an advance in logic that every science would

feel the benefit of it." (Collected Papers, Vol. 4, p. 459.)

Again: ". . . if one learns to think of relations in the forms of

those graphs, one gets the most distinct and esthetically as well as

otherwise intellectually, iconic conception of them likely to suggest

circumstances of theoretic utility, that one can obtain in any way.

The aid that the system of graphs thus affords to the process of logi-

cal analysis, by virtue of its own analytical purity, is surprisingly

great, and reaches further than one would dream. Taught to boys

and girls before grammar, to the point of thorough familiarization,

it would aid them through all their lives. For there are few impor-

tant questions that the analysis of ideas does not help to answer.

The theoretical value of the graphs, too, depends on this." (Col-

lected Papers, Vol. 4, p. 5 1 6. )

There is not space available in this volume to give a coherent ac-

count of Peirce's fantastic diagrammatic method even if I under-

stood it fully, and I am far from assured I do. His several papers on

the topic (reprinted in Vol. 4 of his Collected Papers) are written

in such an elliptic, involuted style that one is led to wonder if Peirce

harbored unconscious compulsions toward cloudy writing that
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would enable him to complain later of his critics' inability to under-

stand him. Add to this opaque style his use of scores of strange

terms invented by himself and altered from time to time, and the

lack of sufficient drawings to illustrate the meaning of these terms,

and the task of comprehending his system becomes formidable

indeed.

A few things, however, are clear. Peirce was not attempting to

create a method that could be used efficiently for the solution of

logic problems, although his graphs could be so used. If one would

devote several hours a day for a week or two to practicing with the

graphs, Peirce wrote, he would soon be able to solve problems with

a facility "about equal" to that of any algebraic method yet devised,

including one such system of his own. What Peirce was primarily

interested in, however, was a method of analyzing in detail the

structure of all deductive reasoning, including mathematical reason-

ing; breaking the structure into all its elements and giving each ele-

ment the simplest, most iconic geometrical representation possible.

In this way the mind would be able to "see" the logical structure in

a fashion analogous to seeing a geographical area when you look

at a map. The graphs, he wrote, "put before us moving pictures of

thought." They render the structure "literally visible before one's

very eyes." In doing this they free the structure from all the "pueril-

ities about words" with which so many English logical works are

strewn. "Often not merely strewn with them," he adds, "but buried

so deep in them, as by a great snowstorm, as to obstruct the reader's

passage and render it fatiguing in the extreme."

In addition to making for clarity, Peirce also believed that, once

a formal structure had been adequately graphed, it could then be

experimented upon in a manner similar to the way a scientist experi-

ments with a structure in nature. By altering the graph in various

ways, adding to it here, taking away there, and so on, one could

discover new properties of the structure properties not previously

suspected. In other words, Peirce viewed his graphs in much the

same way that Lull viewed his Great Art, as an instrument for the

invention and discovery of new truths as well as a device for proving
old ones.

Peirce's system is topological throughout. That is to say, his dia-

grams are unconcerned with size or shape in any metrical sense, but

only with such geometrical properties as remain unaltered if the
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"sheet of assertion" (the piece of paper on which the graphs are

drawn) were made of rubber that could be twisted and stretched

(or, more precisely, given what topologists call a "continuous defor-

mation"). For example, Peirce made abundant use of closed curves

(called "cuts" or "seps") that divide the sheet of assertion into out-

side and inside regions. The system also relies heavily on "lines of

identity," heavy unbroken lines (the shape or length being of no

significance) that connect two signs, one at each end of the line.

These properties of enclosure and connectivity are of course topo-

logical, and in one interesting passage (Collected Papers, Vol. 4,

p. 346) Peirce says that he expects his system of graphs to con-

tribute toward an understanding of topological laws. On more than

one occasion he likens his graphs to chemical diagrams that show
how the molecules of a given substance are bonded together in

various complex topological structures. The graphs bear an even

stronger resemblance, in both appearance and purpose, to the

topological figures employed by Kurt Lewin in his Principles of

Topological Psychology,
5
1936, and by followers of Lewin who are

presently laboring in the field known as "group dynamics."
Peirce sought to make his diagrams as iconic as possible, and in

this he partially succeeded. For example: his use of two closed

curves, one inside the other (he called this a "scroll"), to indicate

what is now called material implication. The outer circle ("out-

loop") represents the antecedent which, if true, necessitates the

truth of all that part of the graph inside the smaller circle ("in-

loop"). There is also, as Peirce points out, an iconic aspect to his

line of identity, as well as its extension into a branching-tree device

called a "ligature." But in many other respects (e.g., the use of

dotted, wavy, and saw-toothed lines, the use of the underside or

"verso" of the sheet as well as other layers of paper beneath to

represent other dimensions of possibility, and so on) the iconic

aspect is entirely or almost entirely lost. This lack of iconicity is

particularly glaring, as Peirce himself confesses, in his later attempt
to distinguish within his system the three traditional varieties of

modality factual truth, possible truth, and necessary truth. Peirce

did this by the use of three different heraldic "tinctures" color, fur,

and metal each in turn divided into four types. (The four "colors"

are azure, gules, vert, and purpure; the four "furs" are sable, ermine,

vair, and potent; the four "metals," argent, or, fer, and plomb.)
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How Ramon Lull would have been intrigued and utterly mystified

by these strange variegated symbols!

These noniconic aspects of Peirce's system give it an air of arbi-

trariness and disjointedness. The parts do not seem to hang together.

One has the feeling that, if twelve competent modern logicians were

to set themselves the task of constructing similar graphs that would

encompass the whole of logic, each would come up with a different

system, and each as good if not better than Peirce's. At any rate,

there is no question that Peirce, like Ramon Lull (whom Peirce in

an unguarded moment once called an "acute logician"), held a

greatly exaggerated notion of the value of his diagrams. That they

were an aid to his own thinking is undeniable. He obviously found

it desirable to think more in pictures than in words, and after having

worked for some twenty years with his own diagrams, he could

probably "see" their meanings as effortlessly as an experienced or-

chestra leader can run his eyes over a musical score and "hear" the

orchestration. For the rest of us, however, it would mean a gigantic

effort of practice and study to master Peirce's intricate technique to

the point of usefulness, and the consensus of logicians who have

undergone this initiation is that the system is not worth this effort/
5

We must remember, however, that Peirce undertook his Gargan-
tuan project at a time when symbolic logic was in its infancy. In

many aspects of his method he was a pioneer groping in unfamiliar

realms. His logic graphs are still the most ambitious yet attempted,

and they are filled with suggestive hints of what can be done along

such lines. Peirce himself expected successors to take up where he

left off and bring his system to perfection. It would be rash to say

that no one in the future will be able to build upon it something
closer to what Peirce was striving for. In the meantime, it stands as

a characteristic monument to one man's extraordinary industry,

brilliance, and eccentricity.
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3: A Network Diagram for

the Prepositional Calculus

Vennenn circles and other diagrams of the shaded-

compartment type can, as we have seen in the previous chapter, be

used for solving problems in the prepositional calculus. In many

respects, however, their application to this type of logic is clumsy

and lacking in what Peirce called "iconicity" formal resemblance

to the logical structure for which they are intended to be visual aids.

This is understandable since these diagrammatic methods were

originally devised for class logic. To use them for truth-value prob-

lems we have to think of the problems in terms of class logic before

the diagram takes on an iconic aspect. Is it possible to diagram state-

ments in the calculus of propositions in such a way that the dia-

grams exhibit more directly the formal structure of truth-value

relations?

In 1951 I set myself the pleasant task of trying to work out such

a system. After experimenting with several different approaches I

finally hit upon the network method that will form the content of

this chapter. It obviously is not intended as a method to compete
in efficiency with algebraic or truth-table methods, but it does

have, it seems to me, some merit in helping novices such as myself
to visualize truth-value structure and to understand better the matrix

method of analysis. In addition, it provides a handy means for

checking results obtained by other methods. That it can be much

improved, I have no doubt. Perhaps it will catch the fancy of some

60
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reader who will discover, in toying with the method, some way of

eliminating its chief defects and rendering it more elegant.

The most annoying drawback of the Venn circles, when applied

to prepositional problems, is the difficulty of separating the premises

from each other on the diagram so that they can be analyzed sep-

arately or altered as desired. This might be done by using sheets of

transparent paper (shading each premise on a different sheet) but

such a procedure is troublesome, and of course it cannot be applied

to classroom blackboards. The network method to be explained

here requires only paper and pencil, or chalk and blackboard, and

it diagrams a series of premises in such fashion that the structure of

each individual premise is visually separate from the others. This

makes it possible for the eye to explore any desired portion of the

structure in a way that is difficult on diagrams of the Venn type.

Essentially, the method is a geometrical analogue of the truth-table

or matrix method of handling prepositional logic, its iconicity

yielding valuable insights into the nature of matrix analysis.

Like all the geometric methods considered so far, this one also is

topological, exploiting the "connectivity" properties of linear net-

works in such manner that the network becomes an isomorph of

the logical structure being analyzed. That the prepositional calculus

can be translated into network theory has been widely recognized

for almost two decades, playing an important role in the designing

of electric circuits for giant computing machines and, as we shall

see in Chapter 8, in the construction of electric logic machines.

But so far as I am aware, this is the first attempt at a network

analogue simple enough to be serviceable as a blackboard or paper
method of solving truth-value problems.

The first step in diagraming a problem is to represent each term

by two vertical, parallel lines which stand for the two possible

truth values of each term. By convention, the line on the left

represents "true," the line on the right "false." If there are, say,

five terms involved in a given problem, the basic graph of Figure

45 is drawn.

A simple assertion that a term is true or false is indicated by a

cross mark on the appropriate truth-value line, as shown in Figure 46.

Statements expressing a relation between two terms are shown

on the graph by one, two, or three horizontal lines that connect a

truth-value line of one term with a truth-value line of another.
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Figure 45. Figure 46.

These horizontal lines will be called "shuttles." It is necessary to

give them some sort of name, and this seems appropriate because

in solving a problem, as we shall see, we actually do shuttle back

and forth along these lines in much the same manner that Man-
hattan's 42nd Street shuttle train moves back and forth between

the Seventh Avenue and Lexington Avenue subway lines.

It is apparent that only four different kinds of shuttles can be

drawn to connect a given pair of terms (Figure 47).
These four shuttles correspond to the four rows of a truth table

for two terms. They connect true with true, true with false, false

with true, and false with false. If we now wish to show a functional

relation between two terms, we have only to eliminate the shuttle

or shuttles that represent invalid combinations of truth values. Or

put another way, to show only shuttles that indicate permissible
combinations.

To illustrate, let us consider first the relation of conjunction

("and"), symbolized by . Only one line of a truth table is valid

for this relation; therefore we graph it with a single shuttle, as Fig-
ure 48 makes clear.

If the relation of conjunction stands alone as a complete premise
(that is

?
if it is not part of a longer statement), then it states un-

equivocally the truth value of each term. In such cases we im-

TT
TF

A- 8

A-'v-B

Figure 47. Figure 48. Figure 49.
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mediately place a cross at each end of the shuttle as shown in

Figure 49.

If, however, the conjunction is part of a compound statement,
we cannot add the crosses for we have no way of knowing whether
the relation itself is true or false. This will be made clear later

when we consider the diagraming of compound statements.

The biconditional, or statement of equivalence (symbolized by
=3), requires two shuttles. In ordinary speech this is expressed by
saying, "If and only if A is true, then B is true." Its truth table has
two valid lines, TT and FF; therefore we diagram it as in Figure 50.

The two shuttles show clearly that, if we are "riding" (to labor

the subway metaphor a moment) on ,4's T line, we have only one
shuttle that will carry us to B, and it will land us on fi's T line.

Similarly, the only available shuttle on A's F line carries us to B's F
line. The same relations hold if we move backward from B to A. In

other words, if either term is true the other must be true; if either

is false, the other must be false.

A = B AVB

Figure 50. Figure 51. Figure 52.

The exclusive "or" of nonequivalence (symbolized by 40 like-

wise is expressed by two shuttles (Figure 51).
The diagram shows at a glance that if one term is true the

other must be false, and vice versa. A comparison of this pattern
with the previous one reveals an interesting fact. Each diagram is

made up of the shuttles missing from the other. This tells us that

one is the negation of the other. Just as we transformed a Venn dia-

gram of a binary relation into its negation by exchanging the black

and white areas, so we can in this method effect the same trans-

formation simply by erasing whatever shuttles are present and

substituting those that are absent.

The inclusive "or" of disjunction ("either or both"), symbolized

by v, requires three shuttles. Inspection of Figure 52 will show that

it is the negation of ^ A ~ B.

The statement "not both A and B are true" (sometimes re-

ferred to as the Sheffer stroke function) , will be symbolized by A \B.
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It is the negation of A B, and likewise requires three shuttles (Fig-

ure 53).

The "If . . . then" of a conditional statement, symbolized by 3
,

also calls for three shuttles.
1 Unlike the previous relations, it is not

symmetrical. That is, the diagram

has two forms, depending on which

term implies the other. These two
ADB forms are indicated in Figure 54.

A IB The shuttles reveal immediately

that A 3 B is the negation of A
~ B, and B D A is the negation

of ^ A B. The diagrams are ex-

cellent classroom devices for ex-

plaining the so-called paradoxes of

material implication. The statement "A implies B" has no mean-

ing in the prepositional calculus other than what is indicated by
the shuttles in its diagram; namely, that all combinations of truth

values are permitted except A* ~ B. Hence, if we let A and B
stand for any two propositions whatever, we see that any true

proposition (A) can only imply another true proposition (B) be-

cause only one shuttle leads from A's T line. On the other hand,

two shuttles lead from A's F line, showing that any false proposition

(~ A) may imply any proposition, true or false (B or ~ B).

Similarly, the two shuttles leading from B's T line tell us that any
true proposition (B) may be implied by any proposition, true or

false (A or ~ A), whereas the single shuttle terminating on B's F
line indicates that a false proposition (^ B) can be implied only

by another false proposition (~ A). The paradoxical character of

such assertions as, "If grass is red then Shakespeare wrote Hamlet"

vanishes as soon as we realize that the "if . . . then" of material

implication has a different meaning in the calculus than in common

speech. It is not intended to assert any causal connection between

the two propositions, but only to tell us what combinations of true

and false values are permitted by the relation.

We have now covered all the binary functions for which there

are common expressions in the language and commonly used sym-
bols in logic. It should be clear that any statement of a truth-value

relation between two terms can easily be diagramed. The relations

discussed occur so often, however, that one's use of the graph will
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be greatly facilitated if they are committed to memory so that it

will not be necessary to pause and analyze the relation, or to

refer to a chart of their shuttle patterns each time a relation has

to be graphed. The order in which the shuttles for a given relation

are drawn is not, of course, significant. But if they are memorized
as patterns, it will be convenient to adopt a specific order of

shuttles for each relation. The order adopted here is one that con-

forms to the most commonly used order of combinations in truth-

table lines.

When one or both terms of a binary relation are negative, as, for

example, ~ A v B, how do we go about drawing the required shut-

tles? The procedure is simple. We consider the pattern for A v B,

then exchange the terminal points of A's two truth-value lines. In

other words, all shuttles on A's T line are shifted to the F line; all

shuttles on A's F line are shifted to the T line. The terminal points

on B remain unchanged. After we have done this we shall discover

that the resulting diagram is identical with the diagram for A 3 B.

The same pattern also results if we diagram <-^B D ^A (in this

case we must of course exchange the terminal points on the truth-

value lines of both terms). Whenever the diagrams for two asser-

tions are identical, then they are said to be "tautologies," that is,

merely two ways of saying the same thing. We can express the

identity of ^ A v B and A D B by connecting them with the sym-
bol of equivalence:

~ A v B =A 3 B. Such a statement is called

an "equivalence formula." Diagrammatically, the equivalence of

two binary relations is revealed by the fact that they have identical

shuttle patterns.

Additional examples will make this clear. De Morgan called

attention to two interesting tautologies known as "De Morgan's

laws." One tells us that the denial of a conjunction can be expressed

by denying each term separately in a disjunctive relation. Sym-

bolically, this is the equivalence formula, A \B = ^ A v ~ B. The

other law tells us that the denial of a disjunction can be expressed

by denying both terms of a conjunctive relation: ~ (A vB) =
~ A ^ B. We can establish both laws simply by diagraming the

two sides of their formula. If the diagrams are identical, then the

two statements are tautological.

Before going into the matter of diagraming chains of terms con-

nected by the same relation, or compound statements involving
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parentheses, let us consider the actual graphing and solution of

two simple problems.
For our first problem, we are given the following four premises :

1. If A is true then B is true. (A D B)
2. Either B is true or C is true, but not both. (B 4* C)
3. Either ^4 is true or C is true, or both. (A v C)
4. B is true. (B)

What can we infer about A and C?

Our first step is to diagram the premises. When this is done, our

graph will appear as shown in Figure 55.

The next step is to examine the network structure to see if it

will unequivocally determine the truth values of A and C. Since

we know the value of B, we begin our exploration at the cross

mark on B's T line. We run our eyes upward along this line to

see if we encounter a premise in which there is a single shuttle

terminating on the line. In this case we find such a shuttle in

premise 2. Since this shuttle indicates a permissible line of travel,

and since the premise does not offer us a choice of more than one

shuttle, we are obliged to follow the single shuttle to its terminal

point on C's F line. Our passage on this shuttle is indicated by

placing cross marks at the two terminal points of the shuttle. The

cross mark on C's F line tells us that premise 2, in combination with

premise 4, forces us to conclude that C is false. We next inspect

C's F line and we quickly discover that in premise 3 we come upon
a single shuttle terminating on this line. We make a cross mark at

this point, follow the shuttle to ,4's T line, and make a cross mark
there also.

We have now determined that C is false and A is true, but we

must continue our examination of the network to make certain that

the premises do not contain a contradiction. Inspection of /4's T
line reveals a single shuttle in premise 1 . We mark the terminal point

with a cross, follow the shuttle to B's T line, and mark its terminal

point there. This last cross mark is consistent with our previous

knowledge that B is true. Since there are no other single shuttles

terminating on the truth-value lines that bear cross marks, we con-

clude that the premises are consistent, and consistent only with

the truth of A and B, and falsity of C. If the premises had con-

tained a contradiction, it would have forced us, in our exploration
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(I)A^B

(3)AVC

(4)B

Figure 55. Figure 56.

of the structure, to affirm both the truth and falsity of at least one

term, and possibly all terms.

Figure 56 shows how the graph appears after our problem has

been solved.

Let us now consider a slightly more difficult problem one in

which we are not told the truth value of any term. Our premises

are:

1 . In August I either wear a hat or go bareheaded.

2. I never go bareheaded in August when I have on a bow
tie.

3. In August I either wear a hat or a bow tie and some-

times both.

To put these statements into symbolic form, we assign the fol-

lowing meanings to A, B, and C.

A I wear a hat in August.

B I wear a bow tie in August.

C I go bareheaded in August.

The premises can now be stated sym-

bolically as:

1. A^C
2. B \C
3. AvB

A network diagram of the premises

will show the structure of Figure 57.

(2)B|C

(3)AvB

Figure 57.



68 Logic Machines and Diagrams

We must now test this structure to see what we can discover

about the truth values of its terms. We may begin anywhere; so

suppose we start by making a cross on A's T line. The single shut-

tle in the first premise forces us to conclude that C is false, but

this is as far as our exploration will take us. We can learn nothing

about B.

The next step is to erase all cross marks and place a cross on

X's F line. This quickly leads us to contradictions. If we explore

the structure fully we find ourselves affirming the truth and falsity

of all three terms.

We must conclude, therefore, that A is true and C false. One

final step remains. B must be tested for both true and false values

to see if contradictions arise. No such contradictions are en-

countered, telling us that the truth of A and the falsity of C are

consistent with either value for B. Hence the answer to our prob-

lem is that in August I always wear a hat, never go bareheaded,

but may or may not sport a bow tie.

In some cases the test of one term is sufficient to establish the

truth values of all terms. In other problems, as in the foregoing, a

test of one term will give values for only a portion of the remaining
terms. Further tests then have to be made to see if the unde-

termined terms are capable of determination by the structure,

or whether the structure leaves a certain number of terms unde-

cidable. It may be, of course, that a given structure will leave all

terms undecidable. Or it may be that certain premises are contra-

dictory. In any case, the graph gives a clear visual picture of the

structure that is open for inspection and experimentation in a way
that is often difficult and confusing if one is using truth-table pro-

cedures. For example, if we have a structure that does not de-

termine the truth value of any term, we may wish to answer such

a question as, "Does the structure permit A and F to be true when
D and G are false?" We have only to make these four assertions

on the graph, then explore the structure to see if they lead to

contradictions. It should be clear that, regardless of how many
terms are involved, or how many binary relations are given, we
can graph the structure and perform upon it any of the operations
that are possible algebraically.

Compound statements involving parentheses can be diagramed

by a simple extension of the graph. We shall illustrate this by con-
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sidering the assertion (AvB)D(CvD). The two disjunctive
statements inside parentheses are first diagramed in the usual

manner, as if they were two premises, except that dotted lines are

used for shuttles instead of solid lines. (This corresponds to the

use of gray shading when Venn circles are used for compound
statements.) The dotted lines indicate the tentative nature of the

shuttles; that is, we do not as yet know whether the relation they

symbolize is a true or false one. If we later learn that it is true,

we change the dotted lines to solid. If we learn that it is false,

we leave the dotted lines (or erase them if we wish) and add in

solid lines the negation of the original pattern. As explained earlier,

this is done by supplying in solid lines the shuttles missing from
the dotted pattern. In either case, if the final result is a single shut-

tle, we immediately place crosses on its terminal points to affirm

the truth-value lines that are involved.

The two parenthetical statements must now be connected on

the graph by a relation of implication. To do this, we adopt the

following procedure. At the right of the graph we draw two pairs

of horizontal truth-value lines, each pair opposite one of the state-

ments already graphed. By convention we assume the lower line of

each pair to be true, the upper line false. If we give the paper a

quarter turn clockwise, these truth-value lines will appear as a fa-

miliar graph for two terms, except in this case each term is itself

a binary relation. On this graph we place the shuttle lines of im-

plication to show that one relation implies the other. These shut-

tles are solid lines since there is no uncertainty about their validity.

The entire graph will now appear like Figure 58.

If a single term is involved in a compound statement, for ex-

ample, A v (B C), the same procedure is adopted. In such a case

we show the tentative character of A by using a half cross or

diagonal mark. It is easily changed to true by adding the other

half, or negated by placing a cross mark on A 9

s F line. The graph

for the entire expression will appear as in Figure 59.

A chain of terms connected by the same relation can often be

diagramed by one or more shuttles with small circles at required

spots along each shuttle to mark the truth-value lines that are in-

volved. For example, A ^ B D can be graphed in the manner

of Figure 60.

If the chain stands alone as a complete premise, we can of course
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A B C D

Figure 58.

B"C

Figure 59. Figure 60.

place X's on each truth-value line involved in the chain. If part of

a compound statement, however, the shuttle must be dotted and the

X's cannot be added until we discover that the entire chain is a valid

relation. The intersection point surrounded by the small circle is

treated exactly as if it were the terminal point of a shuttle. The

absence of a circle on either of C's truth-value lines indicates that

C is not involved in the chain.

A chain of equivalent relations, such as A = B = C, can be

diagramed as in Figure 61, with two shuttles, using small circles on

B's truth-value lines.

Similar procedures can be worked out for statements that tell us

only one term in a series is true, or that all the terms cannot be

false, or that any combination of truth values is permitted except
all true and all false, and so on. In such cases, of course, we are

merely showing the valid lines of a truth table for the entire chain

of terms. In the above three-term example, we make use of two

valid lines of an eight-line table. Consequently, if we found it neces-

sary to negate the chain we would have to replace the two shuttles

by the six missing ones.

When there are more than three terms in a chain, the number
of shuttles involved may become too troublesome to handle and

we may find it simpler to break the chain into parenthetical phrases
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and diagram them by extending the graph to the right as previously

explained. For example, if we interpret the chain AvBvCvDto
mean that all the terms cannot be false, we can diagram this as

(A vB) v (CvD).
Conversely, we may sometimes find it convenient to take a com-

pound expression such as A D (B C), and instead of diagraming
it by extending the graph, we can work out an eight-line truth table

for the entire expression and picture it as shown in Figure 62.

A=B= A=>(BC)

Figure 61. Figure 62.

This is a diagrammatic way of expanding the original state-

ment to what logicians call its "normal disjunctive" form. Each

shuttle in the above diagram represents a valid line of the eight-

line truth table. The entire pattern corresponds to the expression

(A*B*C)v(~A*B*C)v(~A*Bm~C)v(~A*~B*C)
v (~AU~ B-~ c).

When the same terms appear more than once in a statement

it often is possible to reduce the statement to a simpler form

before diagraming it. For example, the statement (A ^ B) v

(^ A ^ B) can be diagramed as parenthetical statements con-

nected by the inclusive "or" relation. But since we are dealing

with only two terms, and since shuttles belonging to the same

binary relation represent disjunctive possibilities, it is much simpler

to diagram the statement as in Figure 63.

This is still not the .simplest cliagram, for we see at once that,

regardless of the truth or falsity of A, B must be false, whereas

knowing B to be false tells us nothing about A. Consequently, we

can picture the original assertion simply by making a cross on

B's F line (Figure 64).

In other words, the formula (A ^ B) v ( A ~B) = ~B
is a tautology. Thus we see how the network graph can be used
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as a visual aid in the task of reducing a statement to its most eco-

nomical or "logically powerful" form. There are a number of rules

that can be followed for the elimination of unnecessary shuttles and

other steps involved in the "minimizing" of a statement, but the

subject is too complicated to go into here.

For long statements containing parentheses within parentheses,

the graph may be extended as far as we please by adding additional

truth-value lines, alternating horizontal with vertical graphs in the

stair-step fashion shown in Figure 65.

Figure 63. Figure 64. Figure 65.

This stair-step procedure will obviously take care of as many

parenthetical levels as desired. All patterns must of course be

shown as tentative (half crosses and dotted shuttles) except for

the final relation shown in the lower right corner. This relation

alone is not tentative and therefore is expressed by solid shuttles.

We cannot go into all the details involved in solving problems

expressed by compound statements, but the reader who is suf-

ficiently interested will not find it difficult to work out his own
rules. The following important rules should make clear the general

nature of the procedure.

1. If the truth values of all individual terms within a paren-
thetical statement are known, and they conform to one of the

dotted shuttles for that statement, then the entire statement is

known to be true.

In some cases, knowing the truth value of one term only is

sufficient to establish the truth value of the entire function. In

the relation of implication, for example, the falsity of A is all the

information we need to know that A 3 B is a true function because

there are two shuttles leading from A's F line. In other words,
there is a shuttle for FT and another for FF; so regardless of
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whether B is true or false, there will be a shuttle to represent the

combination. In similar fashion the truth of B is sufficient to tell

us that A 3 B must be true. We encounter similar situations with
A B and A v B. We can phrase the procedure as follows. When
we know the truth value of one term only, and there are two shut-

tles leading from this truth-value line, we can then affirm the truth

of the entire binary function. If there is only one shuttle, we lack

sufficient information to do this.

2. If the terms are known to have a combination of truth values

not indicated by a shuttle, the entire relation is known to be false.

3. Whenever a parenthetical statement is known to be true,

either because of knowledge of its terms or because it is found to

be true in the process of exploring the entire structure, its shuttles

are changed to solid lines or its half crosses to crosses. The truth of

the entire statement is then indicated by a cross mark on the T line

in the pair of truth-value lines (to the right or below) that corre-

spond to the statement.

4. Whenever a parenthetical statement is known to be false,

in either of the two ways mentioned above, we add the missing
shuttle or shuttles in solid lines. The falsity of the entire relation

is then indicated by a cross mark on the F line in the pair of truth-

value lines that correspond to the statement.

Let us illustrate the entire procedure with an elementary problem
of a type not hitherto considered. Suppose we wish to know whether
the statement (A D B) D (B D A) is a valid theorem. If it is,

then it must hold for all possible value combinations of A and B.
To determine this we first diagram the statement as in Figure 66.

We must now test this structure for the four possible combina-
tions ofvalues for A and B a diagrammatic procedure correspond-

ing to the matrix method of testing a theorem. If none of these

combinations produces a contradiction, we know the structure

represents a valid logi'cal law. Our testing procedure will show that

the combinations TT, TF, and FF are all consistent, but when we
test for FT we encounter a contradiction. Let us see how this

occurs.

The first step in testing for FT is to make a cross on A's F line

and a cross on B's T line as shown in the illustration below. Since

this combination is represented by a shuttle in the pattern for the

lower statement, we know that the lower statement is true. Conse-
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quently, we change its dotted shuttles to solid ones and indicate

the truth of the relation by a cross on the corresponding T line on
the right. Since there is but one shuttle attached to this line, we
must follow the shuttle to the T line of the upper pair of horizontal

truth-value lines. This tells us that the upper statement, B D A, is

also true. We indicate this by putting a cross on its T line and

changing its shuttles to solid lines. The graph should now look

like Figure 67.

Figure 66. Figure 67.

We are obviously involved in a contradiction. For if we explore
^4's F line, affirmed with a cross mark, we encounter a single shut-

tle that carries us to B's F line. But this contradicts our assumption
that B is true. Similarly, the single shuttle attached to S's T line

will carry us to A 's T line, contradicting our assumption that A is

false.

Examination of the structure could have proceeded in other

ways, but the results would have been the same. For example, we
might have begun by finding the upper relation false, in which
case the vertical shuttles on the right would have forced us to

conclude that the lower relation was also false. Knowing it to be
false, we supply in a solid line the missing shuttle. This in turn
tells us that A is true and B false, thus contradicting our original

assumptions about A and B. Of course it does not matter in the
least how we go about exploring the structure. As soon as we en-
counter a contradiction, we know that the statement we are testing
is not a law. If we do not come upon a contradiction, as, for ex-

ample, in testing (A D B) v (B D A), then we know it is a valid
theorem.

Syllogisms can be tested in this way to determine if they are laws,
but the process is awkward, especially if particular statements are
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involved. To give one example, suppose we wished to test the va-

lidity of the syllogism:

All A is B
No B is C
Therefore, no A is C

This can be stated in the prepositional calculus as the follow-

ing theorem: [(,4 D B) *B
\
C] D A C. When we test it for the

eight possible combinations of values for the three terms, it proves
to be valid in all cases. A particular statement, such as "Some A is

5," must be handled as a disjunction in this case, (A B C) v

(A *B*~C).
It should be unnecessary to point out that all the rules given in

this chapter for the manipulation of network diagrams apply only

to a material interpretation of implication. They do not apply to

a system of "strict implication" such as proposed by Clarence I.

Lewis, in which the consequent of an implication must be formally

deducible from the antecedent. In strict implication, knowing the

truth values of individual terms in a conditional relation is not suf-

ficient to tell you the truth value of the entire statement except

when the antecedent is known to be true and the consequent false

(in which case the implication is known to be false). I suspect

that the network method can, with the adoption of suitable con-

ventions, be adapted to strict implication logics, but this is a use

for the method that is beyond my capacities to explore.

It is also possible, I think, to combine this system with the Venn
circles so that problems involving a mixture of class-inclusion

statements and truth-value statements can be handled together.

Still another interesting possibility is that of extending the network

method to take care of multivalued logics that are based on truth-

table matrices.
a For example, a three-value logic could be dia-

gramed by increasing the number of truth-value lines under each

term from two to three. Since shuttles in such a logic represent

two types of relations, true and "indeterminate" (or whatever one

wishes to call the third value) , it will be necessary to distinguish two

types of shuttle lines. This could be done by making "true" shuttles

solid and using a saw-toothed line for the new value.

Exactly what pattern of shuttles to use for a given function will

depend on the type of three-value logic we are considering. Here
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we enter the realm of Lewis Carroll's Humpty Dumpty, for whom
words meant just what he wanted them to mean. In multivalued

logics, connectives such as "and" and "implies" cease to have

intuitive meanings and are used merely to express a specific matrix

pattern of values. To make this a bit clearer, let us reflect a mo-

ment on the meaning of "and" in two-value logic. The assertion

"A and B are true" can be diagramed with two cross marks or a

single shuttle as shown in Figure 68.

A-B A-B

Figure 68. Figure 69.

This shuttle tells us that the other three possible shuttles represent

nonpermissible or "false" combinations of values for A and B;
hence they are eliminated from the diagram. In three-value logic

the situation is not so simple. In the first place we have nine pos-
sible shuttles for every pair of terms. We know that the statement

"A and 5" requires a solid shuttle from A's T line to B's T line,

but how are we to interpret the other eight combinations of values?

The answer is that we can interpret them any way we choose,

basing our decision on such factors as an analogy with two-value

logic, a pleasing symmetry or richness in the pattern, some intended

meaning for the third value, and so on. Each interpretation of "and"

will involve us in a different brand of three-value logic. Jan Lukasie-

wicz, Emil Post, and Barkley Rosser have a preference for an
"and" that can be represented by the shuttle pattern of Figure 69.

On the other hand, the Russian logician D. A. Bochvar based an

interesting three-valued logic on the pattern of Figure 70.

Like the paradoxes of material implication, a great many mys-
teries of three-value logics are cleared up when we realize that

words like "and," "not," and "implies" have only the most tenuous

analogy, if any at all, with their meanings in everyday speech. A
three-value logic function means nothing more than the particular
matrix pattern (in our case, the shuttle pattern) that is permitted
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by that relation. If instead of saying "A implies B" in a three-value

system we said "A galumphs B," considerable clarity might result.

Figure 71 shows how the shuttles for "A implies B" appear when
we diagram the relation in the three-value system proposed by
Lukasiewicz and Alfred Tarski.

A
T ? F

AB

B
T ? F

Figure 70. Figure 71.

There is as little to be gained in trying to understand the "mean-

ing" of this relation as in trying to visualize a four-dimensional

cube. The pattern itself is all the meaning the relation need have.

It is interesting to note that if we remove all the shuttles that have
terminal points on a ? line we are left with the familiar shuttle

pattern of two-value implication. There is a sense, therefore, in

which the two-value structure is a subsystem of this larger matrix.

Many-valued logics of more than three values, such as Hans
Reichenbach's probability logic, would require additional truth-

value lines, one for each value in the system. The different types
of shuttles could be distinguished by using different colored pencils

(corresponding colors could also be used for the value lines). I do
not think the difficulties here are insuperable, but perhaps the com-

plexity of rules that would be necessary for manipulating such

graphs would make them too unwieldy to be useful.

Even in the humdrum world of two-value logic it is sometimes

expedient to graph a problem with value lines that stand for

something other than true and false. Suppose we are told that

Smith, Jones, and Robinson are professors of physics, mathematics,
and philosophy, though not necessarily respectively. A group of

premises tells us that, if Jones teaches physics, Robinson teaches

mathematics, and so on. One approach to this familiar type of
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brain teaser would be to make a graph for nine propositions (Smith

is a philosophy professor, Smith is a physics professor, etc. ) ,
each

capable of being true or false. However, since the three faculty posts

are taken as mutually exclusive, a simpler approach is to use only

three terms (standing for the three men), each with three value

lines to represent the three subjects which they teach. In a way,

this is solving the problem by a kind of three-value logic, though

not a true multivalue system since the relations still must be

either true or false.

Lewis Carroll's plan of placing counters on a graph can also be

adapted to the network system. In-

JL^^JL, JL, stead of truth-value lines we have
T c T cr T cr

truth-value columns in which coun-

ters may be placed to indicate per-

missible true and false combinations.

A sheet of graph paper can be used

as the "board," and buttons or beans

can serve as counters. The statement

(A OB) v (
= C) would appear

on the board as shown in Figure 72.

To indicate the tentative nature of the relations inside paren-
theses we use counters of a different color from those used for the

nontentative relation on the right of the graph. Counters that are

one color on one side, another color on the other, would be con-

venient because then, if we wished to change a relation from

tentative to true, we would only have to turn over its counters. Ob-

viously, all rules that apply to the network method can be

adapted to the counter method. Although this procedure is in some

ways less iconic with propositional logic than the other, in other

ways it more closely resembles the matrix method of truth tables.

It has the advantage of making it easy to alter the structure in

any desired way without the annoyance of having to erase. If one

wishes to simplify a structure by eliminating unnecessary shuttles,

then it has a decided advantage. Actually, this counter method is

really a primitive abacus for performing logic operations; it is as

much a "logic machine" as a "diagram."
As we shall see in the chapters to follow, most of the logic ma-

chines that have so far been constructed, from Lord Stanhope's

syllogism device to modern electrical machines for the propositional

Figure 72.
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calculus, operate by principles that are intimately related to the

diagrammatic procedures sketched in this and the preceding chap-
ter.

References
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A B
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valued Logics, by Rosser and A. R. Turquette, 1952. The latter work contains

an excellent selected bibliography.



4: The Stanhope

Demonstrator

AAlthough Ramon Lull made use of rotating

disks to facilitate the working of his eccentric system of reasoning,

his devices are not "logic machines" in the sense that they can be

used for solving problems in formal logic. The inventor of the

world's first logic machine, in this stricter sense of the term, was a

colorful eighteenth century British statesman and scientist, Charles

Stanhope, third Earl Stanhope (1753-1816). His curious device,

which he called a "demonstrator," is interesting in more ways than

one. Not only could it be used for solving traditional syllogisms by
a method closely linked to the Venn circles; it also took care of

numerical syllogisms (anticipating De Morgan's analysis of such

forms) as well as elementary problems of probability. In addition,

it was based on a system of logical notation which clearly fore-

shadowed Hamilton's technique of reducing syllogisms to state-

ments of identity by making use of negative terms and quantified

predicates.

Stanhope's speculations on logic covered a period of some thirty

years, but he published nothing about his logical views beyond
printing on his own hand press several early chapters of an un-

finished work titled The Science of Reasoning Clearly Explained

upon New Principles. These chapters were circulated only among
a few acquaintances. In a letter written shortly before his death he

advises a friend not to discuss his logical methods with others lest

80
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"some bastard imitation" of his views appear before the publication

of his projected work. It was not until sixty years later that one of

the earl's contrivances, together with relevant letters and notes,

came into the hands of Rev. Robert Harley, who then published
an account of the demonstrator and the logic on which it was

based. It is from Harley's article, "The Stanhope Demonstrator,"

Mind, Vol. 4, April, 1879, that most of the following account of

Lord Stanhope and his unusual device is drawn.

In his day, Stanhope was better known throughout England
for his fiery political opinions and confused domestic affairs than

for his many scientific inventions. His first wife was the sister of

England's young and controversial prime minister, William Pitt.
1

For a time the earl was a supporter of Pitt, but he later broke with

the ministry to become a vigorous opponent of most of its meas-

ures. As a member of the Revolution Society, formed to honor the

Revolution of 1688, his political views were strongly liberal and

democratic. His impetuous proposals in the House of Lords were

so often and so soundly defeated that he was widely known as

the "minority of one," and his thin figure was prominent in the

political cartoons of the period. He was an ardent supporter of the

French republicans in the early days of the French Revolution. It

is said that he even went so far as to discard all the external trap-

pings of his peerage.

At the early age of nineteen he was elected a fellow of the

Royal Society and for the rest of his life he devoted a large seg-

ment of his time and income to scientific pursuits. His best known

inventions were the Stanhope microscopic lens, the Stanhope hand

printing press, a monochord for tuning musical instruments, a sys-

tem for fireproofing buildings, certain improvements in canal locks,

a method of stereotyping, and a primitive steamboat. In a book

titled Principles of Electricity, 1779, he outlines a novel electrical

theory of his own. In addition to his logic machine, he also devised

an arithmetical calculating machine employing geared wheels.
2

Before explaining Stanhope's logic demonstrator, it will be

necessary first to glance briefly at his logic. It rests on the assump-

tion, later emphasized by George Bentham, William Hamilton, and

others, that any proposition in class logic can be interpreted as a

statement of identity.
3 Thus if we say "All men are mortal," we

can take this to mean that the class of all men is identical to a
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portion of the class of all mortal things. If we say "Socrates is

mortal," we mean that this one man, Socrates, is identical to one

of the members of the class of all mortal things. Negative proposi-

tions are reduced to identities by changing them to affirmative state-

ments and employing negative terms. For example, "No swans are

green" tells us that the class of all swans is identical with a portion

of the class of all not-green things.

The following table shows how the four traditional propositions,

A,E,I,O, can be rephrased as statements of identity:

A. All A is B All A = Some B
E. No A is B All A = Some not-B

/. Some A is B Some A Some B
O. Some A is not B Some A ~ Some not-B

Stanhope used the term "holos" (the Greek word for "whole")

to, stand for the middle term of a syllogism, choosing this word

to underscore the fact that the middle term must be universally

distributed in at least one premise before it can successfully

mediate an inference concerning the other two terms. The other

terms are called "ho" and "los" (ho if it is in the first premise, los

if in the second. The order of premises is immaterial. The first

premise is simply the statement first considered).

"The reader will observe," Stanhope writes, "that ho as well as

los may be identic with holos, but that neither ho nor los can ever

exceed holos."

In Stanhope's terminology, the demonstrator is simply a device

for determining what relation of ho to los can be deduced by re-

lating each term to the holos. The contrivance consists of a block

of mahogany 4 inches wide, 4V4 inches tall, and % inch thick,

with a brass plate mounted on the face (Figure 73). In the center

of the plate is a square window
-Red slide or depression about an inch wide

and a half-inch deep. Stanhope
calls this window the "holon." It

represents "all" of the holos, or

middle term of whatever syllo-
Figure 73. .

J

gism is being examined.

A panel of gray wood stands for the ho the term in the first

premise that is not the middle term. It can be pushed into the
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demonstrator through a slot on the left until it covers part or all of

the holon. The los (the term in the second premise that is not the

middle term) is represented by a panel of transparent red glass that

is pushed into the machine through a slot on the right, sliding on

top of the gray in case the two slides overlap. Unlike the gray

panel, however, it cannot be withdrawn completely from the instru-

ment. As we shall see later, the gray panel can be removed from

its slot and inserted through another slot above the holon for work-

ing problems in what Stanhope calls the "logic of probability."

A scale from to 10 appears on the brass frame above and to

the left of the holon. The same scale also is found on the lower

edge of the red slide. Figure 74 shows the face of the demonstrator

DEMONSTRATOR,
INVENTED BY

CHARLES EARL STANHOPE.

The right-hand edge of the gray point* out, on this upper scale,
the extent of the gray, in the logic of certainty.

The lower edge of

tho ffray points oat,

on this side scale, the

extent of the gray,
in the logic of

probability.

The area of
the square opening,
-within the black
frame, represents
the holon, in

all cases.

The right-hand Aide of the square opening points out, on this

lower scale, the extent of the red, in all cases,

The right-hand edge of the gray points out, on the same
lower scale, the extent of the consequence,

(or dark red.) if any, in the

logic of certainty.

Ride for ike Logic of Certainty.

To the gray, add the red, and deduct the holon: the remainder, (or dark red,)
if any, will be the extent of the consequence.

Rule for the Logic tf Probability.

The proportion, between the area of the dark red and the urea of the holon,
if the probability which results from the gray and the led*

PRINTED BY BARL tXAHHOPE, CHKVBtfllfff, KBHT.

Figure 74. Reproduction of the face of Lord Stanhope's demonstrator. (From Mind, April, 1879.)
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as it appears when both slides are pushed in as far as they will go,

the red above the gray and both covering the entire holon.

The working of the device is quite simple. Suppose, for example,

we have the following premises:

No M is A
All B is M

The first step is to convert these premises into affirmative state-

ments of identity, all the terms properly quantified:

All M is some not-^4

All B is some M
We insert the gray panel (which stands for "some not-^4") into

the demonstrator, pushing it to the right until it covers "all" of the

holon (which represents M). In other words, "some not-/l" is made

identical with all of M.
The next step is to push the red slide (all B) until it only par-

tially covers the holon, since all of B is identical with only part of

M . Whenever the two slides are forced to overlap, as in this ex-

ample, the gray panel is visible through the red and we can con-

clude that an identity has been established between the ho and the

los. In this case we conclude that "all B" is identical with "some

not-^4." This is the same as saying "No B is A" (or "No A is B"),

the traditional valid conclusion of the syllogism. The device, it

should be noted, does not show the "weak" conclusions "Some B
is not A" and "Some A is not B." These have to be obtained by
immediate inference from "No B is A."

The rules for operating the demonstrator can be summarized as

follows:

1. When a premise relates a term to "all" of the middle term, we

push the panel for that term over the entire holon.

2. When a premise relates a term to "some" of the middle term,

we push the panel for that term over part of the holon.

3. When a premise relates a term to "none" of the middle term

(e.g., "No A is M," or in affirmative form, "All A is not-M"), we
withdraw the panel for that term so that no part of the holon is

covered by it.

4. After the two slides are properly adjusted to represent the

two premises, we inspect the holon to see if the slides must of

necessity overlap. If so, we may then conclude an identity has been
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established between the terms represented by the slides. If the

slides are not forced to overlap, no identity is established and

therefore no conclusion can be drawn.

A few more examples will make the process clearer.

No M is A
No M is B

In affirmative form this is :

All M is some not-A

All M is some not-B

The two slides, standing for "some not-^4" and "some not-B" are

each pushed over the entire holon. They must overlap; so we con-

clude that "Some not-A is some not-B." This is not, of course, a

traditional conclusion, for we have committed the fallacy of begin-

ning with two negative premises and so cannot draw a conclusion

about the relation of A to B. Nevertheless, it is a valid conclusion

(assuming that the middle term has members), as can be seen easily

by making a Venn diagram of the syllogism. We may even go a

step further, Stanhope points out, and conclude that as many
not-^'s are not-B's as there are M's.

In one case only, that of the traditionally troublesome syllogism

Baroco, the holon must be regarded as "not-M" instead of M. The

two premises of Baroco:

All A is M
Some B is not M

must be converted to:

All not-M is some not-A

Some B is some not-M

The gray slide (some not-A) is pushed over the entire holon,

which in this case represents "not-M." The red slide (some B) is

pushed over part of the holon. The two must overlap, indicating

the traditional conclusion of Baroco, "Some B is some not-A," or

as commonly expressed, "Some B is not A."

In such fashion the device can be used to demonstrate valid con-

clusions from two premises or to show that no valid conclusion

can be drawn. The task, however, of translating the premises into

proper form is so tedious that the device possesses little value either
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as an efficient means of handling syllogisms or in giving the mind

a clear visual understanding of what is happening in syllogistic

inference. In such respects it is markedly inferior to the Venn cir-

cles, which in some ways it anticipates. On the other hand, owing to

its rectangular form, it is more efficient than the Venn circles when

used for syllogisms with terms that have numerically definite quanti-

fiers or indefinite quantifiers such as "more than half or "less than

half."

Consider, for example, these premises:

Some M is some A
Some M is some B

The gray panel is "some A"] the red is
u
some S." Each is pushed

only part way over the holon (some M). The two slides are not

forced to overlap; hence no conclusion can be drawn. Suppose,

however, that for "some M" in each premise we substitute "most of

M." In this case, each slide is made to cover "most," or more than

half of the holon, and it is apparent that they must overlap to some

extent. We therefore can conclude validly that "Some A is B." This

is, of course, an example of one of De Morgan's syllogisms discussed

in the second chapter.

To illustrate how the demonstrator may be used for De Mor-

gan's syllogism with numerical quantifiers, let us consider what

can be deduced from the following two premises :

8 of 10 pictures are abstractions.

4 of the same 10 pictures are by Picasso.

We let the holon stand for the middle term of "10 pictures." The

gray slide (8 abstractions) is pushed in from the left until its right

edge reaches 8 on the top scale. In other words, until it covers %<>

of the area of the holon. The red slide (4 pictures by Picasso) is

pushed in from the right until the number 4 on its lower scale

coincides with the right edge of the holon; in other words, until

it covers %o of the holon. Through the red glass we see immediately
that the edge of the gray slide is touching the 2 on the red slide's

scale, indicating that the overlapping area is %o of the holon.

This is what Stanhope calls, on the face of his device, the "extent

of the consequence," namely, the minimum number of objects that

belong to both the ho and the los. Our conclusion, then, is that at
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least two of the abstractions must be by Picasso. Of course there

may be more (four is the upper limit because there are only four

Picasso pictures), but the demonstrator neatly provides us with

a visual demonstration of why two is the lower limit.

If the middle term is less than ten units say, six units then we

simply regard as our holon only that portion of the aperture which

extends from the left side to 6 on the upper scale. The gray slide

is unaffected by this, but when we use the red slide we must re-

member to bring the desired number on its lower edge to the point

indicated by 6 on the upper scale rather than to the right edge of

the holon. It is clear that numerical syllogisms with terms quanti-

fied by numbers higher than ten could be handled in exactly the

same manner on demonstrators with scales divided into a larger

number of units.

In Stanhope's terminology, the demonstrator operates mechan-

ically on all types of syllogisms according to the following simple
rule: "Add ho to los and subtract holos" The machine shows

clearly how the rule applies, regardless of whether the terms of the

syllogism are quantified by numbers, more or less than half, or "all"

and "some."

"Behold, then," the Earl writes in one of his notes, "the luminous

perspicuity and most beautiful simplicity of this new system of

logic!"

Stanhope's letters and unpublished papers do not give examples
of how he used his device for his "logic of probability," but from

the rule given at the bottom of the brass face (see Figure 74), it is

easy to understand how the instrument must have been employed
on such problems. This rule states, "The proportion between the

area of the dark red [that is, the overlapping area of the two

slides] and the area of the holon, is the probability which results

from the gray and red."

Rev. Harley illustrates this in his article with the following ele-

mentary problem. We wish to determine the probability that a

penny will fall heads both times if we toss it twice.

The holon represents 1 or "certainty." The probability of a head

in a single throw is one-half. To show this, the gray slide is re-

moved from the slot on the left, inserted through the slot at the

top, then pushed down until its edge reaches 5 on the left-hand

scale; that is, until it covers one-half the area of the holon. To
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represent the chance of a head on the second toss, the red slide is

pushed to the left until it also covers one-half the area of the

holon. The dark red, or overlapping area of the two slides, is ob-

viously one-fourth of the holon. The chance that the penny will fall

heads on both tosses is therefore one-fourth. The same procedure
would be used, Harley points out, to give exactly the same answer,

if we wanted to know the probability that the coin would fall tails

twice, or heads and then tails, or tails and then heads.

As in dealing with numerical syllogisms, probability problems

involving fractions that cannot be expressed in tenths could be

suitably handled by giving the device whatever type of scale it re-

quired. As we shall see in Chapter 9, Stanhope's demonstrator,

used in the manner just explained, actually is a crude first attempt
at a kind of inductive logic machine.

If for your own amusement you wish to make a demonstrator,

Rev. Harley suggests a simple way to go about it. Draw on a sheet

of graph paper a square consisting of 100 smaller squares and

HOLON

LA3 3' 4- 5
, 6; 7 9 JO

GRAY SLIDE RED SLIDE

Figures 75 (top) 7 76, and 77.
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label the lattice lines above and on the left as shown in Figure 75.

For the gray slide, use a similar square (Figure 76), and for the

red slide, a square with a scale indicated on the bottom edge as

shown in Figure 77. Harley suggests trimming the lower edge of

this square as pictured, so that, when it overlaps the other square,

the extent of overlapping can be clearly seen. If you wish, you can

color this slide red, and of course all three squares may be mounted

on cardboard to make them more durable. They obviously are ca-

pable of performing any operation that can be performed on the

Stanhope device.

References

1. Stanhope had three daughters by his first wife. The youngest created a scandal

by eloping with the family druggist. The Earl was never reconciled to the pair,

but Prime Minister Pitt made the druggist controller-general of the customs.
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interest in the occult intensified, and she claimed to be an inspired prophetess.
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by her physician, Dr. Charles Lewis Meryon.
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2. Lord Stanhope either made or had made for him several models of both his

logic and arithmetical machines. Photographs of one model of each machine

are reproduced opposite page 127 of Early Science in Oxford, by Robert

W. T. Gunther, Vol. 1, Part 1, 1922. These two models are owned by the

Oxford Museum of the History of Science, Old Ashmolean Building, Oxford.

A second model of the logic machine is owned by the present Earl Stanhope.

3. A quotation from one of Stanhope's letters gives an amusing insight into the

value he placed on recognizing that class propositions could be expressed as

identities:

"When I talk of identity, I do not say, as you make me say, que 'L'dme est

I'ame,' car cela ne dit rien, but I say thus: Example. Suppose I had heard

that there was such a thing as a comet. I now perceive in the heavens at night

a star with a luminous tail; that is all I know, and it is by means of that

mental description that I distinguish that star from all other stars. I afterwards

find my star, so distinguished, described and defined, amongst the stars of some

new constellation, and I predicate that that star has moved fast, which is a

quality of my comet, but which quality of my comet was before to me un-

known; that is to say, I aver that 'the star with a luminous tail' and a star



90 Logic Machines and Diagrams

which 'moves fast,' that is, which belongs to the class of stars that move fast,

are IDENTIC. Have I not made an advance in knowledge by my having so per-

ceived, though in point of fact, it is the same comet, the identical comet, orig-

inally described by me incompletely, before I perceived, or could predicate,

such identity? Voila tout. Would it not sound to your ears very droll if a

person were to say that that star moving fast means that it is identic with

some star which does not move fast? Now if that would be evidently wrong,

and if I have by my method only two opposite classes, viz., stars moving fast

and stars not moving fast, if the proposition in question does not mean that

the given star is identic with a star in the second class, it must mean that it

is identic with a star in the first class; for there are two classes only. This is

my induction in other words."



5: Jevons's Logic Machine

R amon Lull was the first to use a mechanical

device as an aid to reasoning. Lord Stanhope was the first to use

a mechanical device for the solution of problems in formal logic.

The next great step in the history of logic machines took place in

1869 when William Stanley Jevons, British economist and logician,

produced the first working model of his famous logic machine. It

was the first such machine with sufficient power to solve a compli-
cated problem faster than the problem could be solved without the

machine's aid.

Jevons was born in Liverpool in 1835, the son of an iron mer-

chant. He interrupted his education at University College, London,
to spend five years working for the British mint in Sidney, Australia.

In 1859 he returned to University College and, after obtaining a

master of arts degree, accepted the post of tutor at Owens College,

now the University of Manchester. He soon found himself carrying

the double title of "professor of logic and mental and moral philos-

ophy" and "professor of political economy." In 1876 he became

professor of political economy at his alma mater, the University

College, London, where he remained until he resigned the chair in

1880 because of failing health. Two years later, at the age of only

forty-seven, he was drowned while swimming alone off the beach

at Bulverhythe, near Hastings.

As an economist, Jevons is regarded as one of the pioneers in

the rigorous application of statistical techniques to the study of

economic issues. His Theory of Political Economy, 1871, is the

91
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most important of his many books and papers on economic and

political topics. Unfortunately, his valuable contributions to eco-

nomic theory (especially his trenchant analysis of marginal utility)

are less well remembered today than his speculations on the rela-

tion of sunspots to business cycles. In the light of present-day

knowledge and statistical sophistication, such a theory can only be

regarded as eccentric, but we must remember that in Jevons's time

it was far from a crank notion. The view that sunspots might influ-

ence weather and crops, which in turn would affect the business

cycle, then had a plausibility that deserved careful exploration.
1

In somewhat similar fashion, Jevons's fame as the inventor of a

logic machine has tended to obscure the important role he played
in the history of both deductive and inductive logic. He was one of

the pioneers of modern symbolic logic, and his Principles of Sci-

ence, first issued in 1874, deserves far more recognition than it

has today as an important treatise on the philosophy and methods

of science. At a time when most British logicians ignored or damned
with faint praise the remarkable achievements of George Boole,

Jevons was quick to see the importance of Boole's work as well as

many of its defects. He regarded Boole's algebraic logic as the

greatest advance in the history of the subject since Aristotle. He

deplored the fact that Boole's two revolutionary books, published
as early as 1847 and 1854, had virtually no effect on the specula-
tions of leading logicians of the time.

On the other hand, Jevons believed (and modern logicians agree
with him) that Boole had been led astray by efforts to make his

logical notation resemble algebraic notation. "I am quite con-

vinced/' Jevons stated in a letter, "that Boole's forms . . . have no
real analogy to the similar mathematical expressions."

2 He also

saw clearly the weakness in Boole's preference for the exclusive

rather than the inclusive interpretation of "or."

It was to overcome what he regarded as unnecessary obscurity
and awkwardness in Boole's notation that Jevons devised a method
of his own that he called the "method of indirect inference." "I

have been able to arrive at exactly the same results as Dr. Boole,"
he wrote, "without the use of any mathematics; and though the

very simple process which I am about' to describe can hardly be
said to be strictly Dr. Boole's logic, it is yet very similar to it and
can prove everything that Dr. Boole proved."

3
Jevons's system, as
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we shall see, is also very similar to Venn's diagrammatic method

as well as a primitive form of the familiar matrix or truth-table

technique. Since it underlies Jevons's logic machine, it will be

necessary to review it in some detail.

Putting it jocularly, but with a certain amount of justification,

one might say that the method is a linking of Lull's Ars magna
with one of Sherlock Holmes's favorite canons of deduction;

namely, that if you eliminate all possible explanations of a crime

but one, that one explanation is certain to be correct. As the tech-

nique of reductio ad absurdum, this procedure is an ancient one,

but the realization that it could be applied to the Boolean logic

came to Jevons in an almost Lullian-like illumination. "As I awoke

in the morning," he recorded in his journal in 1866, "the sun was

shining brightly into my room. There was a consciousness on my
mind that I was the discoverer of the true logic of the future. For

a few minutes I felt a delight such as one can seldom hope to

feel."
4

The easiest way to explain Jevons's logic is to give a few ex-

amples of how it operates. Let us consider first the two syllogistic

premises, All A is B, and No B is C. Our first step is to make

a Lullian table that exhausts all possible combinations of ABC
and their negations. Since Jevons always symbolized a negation by

using a lower-case letter (a convention which he borrowed from

De Morgan) we shall adopt this practice here. The table appears

as follows:

ABC
ABc
AbC
Abe
aBC
aBc

abC
abc

These eight classes correspond of course to the eight compart-

ments of Venn's three-circle diagram (including the area repre-

senting abc, which lies outside the circles). Jevons at first called

such an exhaustive list an "abecedarium," but students found this

difficult to pronounce so he soon discarded it for "logical alpha-
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bet." 5 His procedure for analyzing the two premises corresponds

precisely with Venn's procedure in shading compartments on the

intersecting circles.
6 The first premise, All A is B, tells us that the

classes Abe and AbC are empty; therefore we draw a line through
them. Similarly, the second premise, No B is C, will eliminate

classes ABC and aBC. The logical alphabet will now look like this:

ABC
ABc

aBc

abC
abc

The final step is to inspect the remaining classes, all consistent

with the premises, to see what we can determine about the relation

of A to C. We note at once that "No A is C" (that is, there are no

remaining combinations containing both A and C); hence this is

a valid inference from the premises. On the assumption that none
of the three classes are empty, we may also conclude that "Some
A is not C," since the only class containing an A is one that con-
tains a c. This is what classic logic calls a "weak" conclusion be-

cause it can be derived by immediate inference from the universal
conclusion "No A is C." We may also draw various other non-
traditional inferences such as "Some not-A is C." Like Venn and
Lewis Carroll, Jevons was proud of the fact that his system was
not limited to the traditional syllogistic conclusions, providing all

possible inferences from the original premises.
In handling particular ("some") statements, the logical alphabet

does not operate as smoothly as the Venn circles. The premise
"Some A is B" does not eliminate any classes, but simply states

that, of the two combinations ABc and ABC t at least one and pos-
sibly both have members. Perhaps the best procedure is to draw
circles around these combinations (corresponding to the placing of
-Y's in the cells of Venn circles), remembering that, when two
classes are circled, they cannot both be empty. Jevons suggested
some other procedures for handling these troublesome "somes,"
all rather clumsy and of no special interest.
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In working with binary truth-value relations, Jevons's system

operates more efficiently than with class logic. In explaining its

application to the propositional calculus we shall take the same
liberties we took in explaining how the Venn diagrams could be

similarly used. Like Venn and most of the other logicians of his

time, Jevons confined his attention almost exclusively to class logic.

He combined statements of class inclusion (though he preferred,

like Stanhope, to think of such statements in terms of identity of

part or all of one class with part or all of another) with conjunc-
tive or disjunctive assertions (e.g., All A and B is either C or D)
but almost never worked with truth-value relations alone.

The trend toward a truth-value calculus was making a faint be-

ginning in Jevons's time, but unfortunately he failed completely to

see its significance.
7

Perhaps, like Boole, he was too intent on

keeping his notation in the form of equations. For example, Jevons's

expression for the statement "All A is fi" is the equation A AB,

meaning that all of class A is identical with the class of things that

are both A and B. This equational form then permitted him to sub-

stitute for any term or statement any other term or statement that

was equivalent. Jevons called this "the substitution of similars."

(Statements were "similar" for him if they removed the same com-

binations from his logical alphabet. Modern logicians would call

them equivalent or tautological.) The following passage from his

Studies in Deductive Logic, p. xv, in which he refers to the new

calculus of Hugh MacColl,
8
reveals how decisively Jevons turned

his back on the trend toward truth-value analysis:

Mr. MacColl rejects equations in favor of implications; thus my A = AB
becomes with him A :#, or A implies B. Even his letter-terms differ in mean-

ing from mine, since his letters denote propositions, not things. Thus A:B
asserts that the statement A implies the statement B, or that whenever A is

true, B is also true. It is difficult to believe that there is any advantage in

these innovations; certainly, in preferring implications to equations, Mr.

MacColl ignores the necessity of the equation for the application of the

Principle of Substitution. His proposals seem to me to tend towards throw-

ing Formal Logic back into its ante-Boolian confusion.

Because of his preference for what he called "equational logic,"

we shall look in vain through Jevons's works for problems of a

truth-value nature. Ironically, these are precisely the problems that

are the easiest to solve by his method. The following simple ex-
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amples should make clear how such problems are handled. We are

given these premises:

If and only if A is true, then B is true.

Either B or C, but not both, are true.

A is false.

We wish to know what we may infer about B and C.

As before, the first step is to write down the logical alphabet for

three terms. The first premise tells us that we must eliminate all

combinations containing Ab and aB. The second premise elimi-

nates all combinations containing EC and be.
9 The third premise

excludes all combinations containing A. The alphabet will now
look like this:

Inspection of the one remaining line of the alphabet shows clearly

that B must be false and C true.

The method is essentially the same as the method described in

Chapter 2 by which Venn circles may be used for truth-value

logic. Both methods correspond closely to a truth-table analysis.
The logical alphabet is simply another way of symbolizing all the

possible combinations of truth values. Each premise forces us to

eliminate certain lines of this "truth table." What remain are of

course the lines that are consistent with the premises. If the

premises contain a contradiction, then all the lines will be elimi-

nated just as all the compartments will become shaded if contra-

dictory truth-value premises are diagramed on Venn circles.
10

Jevons likes to call his system a "combinatorial logic," and although
he did not apply it to propositional functions, he clearly grasped
the principles of matrix analysis that had eluded Boole even though
it was implied in his formula for expanding a function. Dr. Wolfe

Mays, senior lecturer in philosophy at the University of Manchester
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(and, as we shall learn later, a coinventor of England's first electric

logic machine), is of the opinion that Jevons was the first to make
use of matrix analysis.

11

To increase the efficiency of his combinatorial method, Jevons

devised a number of laborsaving devices, culminating in the con-

struction of his logic machine. For example, he suggested having
a rubber stamp made of the logical alphabet for three terms, another

stamp for four. This eliminates the annoyance of having to jot down
all the combinations each time you tackle a new problem. For

a problem of five terms, you have only to make two impressions

with the ABCD stamp, heading one of them E and the other e.

(Venn also suggested having rubber stamps made for his circular

figures. See his Symbolic Logic, revised 1894 edition, p. 135.)

As early as 1863 Jevons was using a "logical slate." This was a

slate on which a logical alphabet was permanently engraved so that

problems could be solved by chalking out the inconsistent lines.

Still another device, suggested to Jevons by a correspondent, is to

pencil the alphabet along the extreme edge of a sheet of paper, then

cut the sheet between each pair of adjacent combinations, When
a combination is to be eliminated, it is simply folded back out of

sight.

Jevons's "logical abacus" (most fully described in his book The

Substitution of Similars, 1869) was a laborsaving device that re-

quired only the addition of keys, levers, and pulleys to become a

logic machine. The abacus consisted of small rectangular wooden

boards, all the same size, and each bearing a different combination

of true and false terms. The boards were lined up on a rack. An

arrangement of pegs on the side of each board was such that one

could insert a ruler under the pegs and quickly pick out whatever

group of boards one wished to remove from the rack. The device

was really a primitive form of an IBM punch-card machine, and

suggests how easily such a sorting mechanism could be adapted to

solving logic problems by the Jevons method.

Jevons's "logical piano," as he sometimes called the machine, was

built for him by a "young clockmaker in Salford" in 1869. 12 The

following year he demonstrated the machine at a meeting of the

Royal Society of London, explaining its construction and working

in a paper titled "On the Mechanical Performance of Logical In-

ference." The paper was printed in full, together with plates show-



98 Logic Machines and Diagrams

ing details of the machine's construction, in the society's Philo-

sophical Transactions, Vol. 160, 1870, p. 497. This paper was later

reprinted in Jevons's posthumously published Pure Logic and Other

Minor Works, 1890. (Summaries of the paper appeared in the so-

ciety's Proceedings, Vol. 18, Jan.

20, 1870, p. 166, and in Nature,

Vol. 1, Jan. 27, 1870, p. 343.)

In appearance Jevons's ma-

chine resembles a miniature up-

right piano about 3 feet high

(Figure 78). On the face of the

piano are openings through which

one can see letters representing

the 16 possible combinations of

four terms and their negatives.

(Each combination forms a ver-

tical row of four terms. ) The key-

board consists of 21 keys arranged
as shown in Figure 79.

The four terms, in positive and

negative forms, are represented

by eight "letter keys" on the left,

and eight letter keys in mirror-

image order on the right. The re-

maining five keys are called "oper-
ation keys." The "copula" in the center is pressed to indicate the

sign of equality connecting left and right sides of an equation. The
"full stop" on the extreme right is pressed after a complete equa-
tion has been fed to the machine. When the "finis" key on the ex-

Figure 78. Jevons's logic machine. (From

frontispiece of Principles of Science, 1874,

by William S. Jevons.)

Figure 79.

treme left is pressed, it restores the machine to its original condi-

tion. The next-to-end keys on both sides represent the inclusive

"or" which Jevons symbolized by .|.. They are used whenever the
"or" relation occurs within either the left or right sides of an equa-
tion,
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To operate the machine it is only necessary to press the keys
in the order indicated by the terms of an equation. For example, let

us consider the equation A AB, which as we have seen was

Jevons's notation for "All A is B." To feed this to the machine we

press the following keys in order: A (on the left), copula, A (on
the right), B (on the right), full stop. This action automatically

eliminates from the face of the machine all combinations of terms

inconsistent with the proposition just fed to the machine. Additional

equations are handled in exactly the same manner. After all prem-
ises have been fed to the device, its face is then inspected to deter-

mine what conclusions can be drawn. This is by no means a com-

plete description of the technique for operating the machine, but it

should suffice to indicate in a general way how the machine is han-

dled. The interested reader can learn further details by consulting

the references cited above.

Jevons did not think that his machine had any practical use,

owing to the fact that complex logical questions seldom arise in

everyday life. But he did feel that it was valuable as a classroom

device for demonstrating the nature of logical analysis, and also

that it furnished a convincing proof of the superiority of Boolean

logic over that of Aristotle. The following lengthy quotation (Prin-

ciples of Science, pp. 113 ff.) is striking because it reveals how

clearly Jevons grasped the revolutionary character of Boole's work

as well as many of its defects:

The time must come when the inevitable results of the admirable investi-

gations of the late Dr. Boole must be recognized at their true value, and the

plain and palpable form in which the machine presents those results will, I

hope, hasten the time. Undoubtedly Boole's life marks an era in the science

of human reason. It may seem strange that it had remained for him first

to set forth in its full extent the problem of logic, but I am not aware that

anyone before him had treated logic as a symbolic method for evolving from

any premises the description of any class whatsoever as defined by those

premises. In spite of several serious errors into which he fell, it will probably
be allowed that Boole discovered the true and general form of logic, and put

the science substantially into the form which it must hold for evermore. He
thus effected a reform with which there is hardly anything comparable in

the history of logic between his time and the remote age of Aristotle.

Nevertheless, Boole's quasi-mathematical system could hardly be regarded

as a final and unexceptionable solution of the problem. Not only did it re-

quire the manipulation of mathematical symbols in a very intricate and per-

plexing manner, but the results when obtained were devoid of demon-
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strative force, because they turned upon the employment of unintelligible

symbols, acquiring meaning only by analogy. I have also pointed out that he

imported into his system a condition concerning the exclusive nature of

alternatives, which is not necessarily true of logical terms. I shall have to

show in the next chapter that logic is really the basis of the whole science of

mathematical reasoning, so that Boole inverted the true order of proof when

he proposed to infer logical truths by algebraic processes. It is wonderful

evidence of his mental power that by methods fundamentally false he should

have succeeded in reaching true conclusions and widening the sphere of

reason.

The mechanical performance of logical inference affords a demonstration

both of the truth of Boole's results and of the mistaken nature of his mode
of deducing them. Conclusions which he could obtain only by pages of in-

tricate calculation, are exhibited by the machine after one or two minutes

of manipulation. And not only are those conclusions easily reached, but they

are demonstratively true, because every step of the process involves nothing

more obscure than the three fundamental Laws of Thought.

It is not surprising that Jevons's logic machine, being the first of

its kind, would have defects that could be remedied by later ma-

chines operating on essentially the same principles. By insisting that

statements be fed to the machine in a clumsy equational form, it is

made unnecessarily complicated. There is no efficient procedure for

feeding "some" propositions to the machine. The mechanism does

not permit of easy extension to a larger number of terms. ( Jevons

once contemplated building a machine for ten terms but abandoned

the project when it became clear that the device would occupy the

entire wall space of one side of his study.)

A more serious objection to the machine, and one that may not

permit of remedy within the framework of Jevons's combinatorial

logic, was voiced by the British philosopher Francis H. Bradley in

a section on the machine in his The Principles of Logic, 1883. As a

conclusion, the machine merely exhibits all the consistent lines of

the logical alphabet (i.e., all the valid lines of a truth table for the

combined premises). It does not perform the additional step of

analyzing these lines so that one can see the desired conclusion.

The process of analyzing the consistent combinations to determine

which terms are true and which are false, or even to find the con-

clusion of a syllogism, is often as laborious as solving the problem
itself. In many cases the valid combinations will not provide true

and false values for individual terms but will give a series of con-

sistent combinations that can be condensed into a simpler, more
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"powerful" logical statement. For example, the machine may reveal

the following valid combinations: AB, Ab, aB. It does not have

the power to reduce this answer to the simpler statement, "Either

A or B, or both, are true" (A v B), In simple cases such as this,

one can easily see the relation that is involved, but in more compli-
cated cases, the task of reducing the answer to compact form is not

an easy one. In Principles of Science Jevons discusses this task in

terms of what he calls the "inverse problem," identifying it (not

very successfully) with the process of induction. He does not relate

the problem to his machine, though clearly it would be of great

value to have a mechanical method of performing these desired

reductions.

Jevons himself suggested a crude pencil and paper technique of

reducing statements (Principles of Science, p. 139) comparing it

with the "sieve of Eratosthenes" by which one can search for prime
numbers. Later logicians have devised better methods, and although
no mechanical device has been built for performing these opera-

tions, we shall see in Chapter 8 that electric "minimizing machines"

have been constructed.
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tional is true." See chap. 15 of Ancient Formal Logic, by I. M. Bochenski,

Amsterdam, 1951.

8. MacColl made many valuable contributions toward an efficient notation for

the prepositional calculus in articles published only in British newspapers and

magazines. Alonzo Church credits him with having developed the first true

prepositional calculus, and J. Barkley Rosser has recently called attention

to MacColl's astonishing analysis, as early as 1896, of a three-value logic

using the values "necessary," "impossible," and "possible but not necessary."
9. In one of his letters (The Letters and Journal of W. Stanley Jevons, p. 350)

Jevons contrasts his notation for the exclusive "or" with Boole's notation to

show the greater simplicity of his method over Boole's. Jevons used the

symbol
|

for inclusive disjunction. He was therefore able to express any
binary relation by the simple expedient of using this symbol to join together
the required combinations of true and false terms. Thus his notation for the
exclusive "or" was Ab aB. Boole's way of symbolizing the same relation
was x(l y) -f v(l #). In Studies in Deductive Logic Jevons gives a com-
plete matrix analysis of the 256 possible relations involving three terms, ex-

pressing each relation both in equational form and in terms of the valid lines

of its truth table.

10. This holds only for the prepositional calculus. In class logic a contradiction
is revealed in two ways: (1) when all the combinations specified by a "some"
proposition are eliminated by a universal proposition, and (2) when a class
known to have members is declared empty by the elimination of all combi-
nations containing the capital letter for that class.
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11. The answer to the question of who was the first to use a matrix method de-

pends of course on how broadly or narrowly the term "matrix method" is

defined. As Venn points out (Symbolic Logic, revised 1894 edition, p. 415),

C. A. Semler, in an 1811 German work, suggested the procedure of listing

all possible combinations of terms, then striking out those that are contra-

dicted by the premises, a clear anticipation of Jevons's method. If by "matrix

method" we mean nothing more than recognition of the alternate possible

combinations of truth values for a given binary function, then this recogni-

tion goes all the way back to the ancient Stoic-Megaric school. A truth table

for material implication, for example, is given by Sextus Empiricus to define

the meaning of a conditional statement as it was understood by Philo of

Megara.

The fact remains, however, that Jevons was probably the first to make ex-

tensive use of what is substantially a truth-table method for solving prob-

lems, even though its first explicit application to truth-value statements came

later. In Jevons's unpublished notes, Dr. W. Mays has pointed out, he even

used the now familiar notational device of marking lines of his alphabet with

1 or to indicate their truth or falsity.

12. In 1914 Jevons's original machine was given by his son to the Science Mu-

seum, South Kensington, London, but in 1934 it was transferred to the Ox-

ford Museum of the History of Science, Old Ashmolean Building, Oxford,

where it is now on display.
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he Reverend John Venn did not have a high

opinion of Jevons as a logician. "Excellent as much of Jevons' work

is," Venn wrote (Symbolic Logic, revised 1894 edition, p. 165),
"

especially as regards the principles of physical and economical

science, I cannot but hold that in the domain of logic his incon-

sistencies and contradictions are remarkable." There was a strong

element of rivalry between the two men; hence it is not surprising to

find Venn dismissing Jevons's logic machine as essentially trivial.

I have no high estimate myself [he writes, op.cit., p. 133], of the interest

or importance of what are sometimes called logical machines, and this on

two grounds. In the first place, it is very seldom that intricate logical calcu-

lations are practically forced upon us; it is rather we who look about for

complicated examples in order to illustrate our rules and methods. In this

respect logical calculations stand in marked contrast with those of mathe-

matics, where economical devices of any kind may subserve a really valu-

able purpose by enabling us to avoid otherwise inevitable labour. Moreover,
in the second place, it does not seem to me that any contrivances at present
known or likely to be discovered really deserve the name of logical ma-
chines. It is but a very small part of the entire process, which goes to form
a piece of reasoning, which they are capable of performing. For, if we begin
from the beginning, that process would involve four tolerably distinct steps.

There is, first, the statement of our data in accurate logical language. This

step deserves to be reckoned, since the variations of popular language are so

multitudinous, and the terms often so ambiguous, that the data may need
careful consideration before they can be reduced to form. Then, secondly,

104
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we have to throw these statements into a form fit for the engine to work
with in this case to reduce each proposition to its elementary denials. It

would task the energies of any machine to deal at once with the premises

employed even in such simple examples as we have offered, if they were

presented to it in their original form. Thirdly, there is the combination or

further treatment of our premises after such reduction. Finally, the results

have to be interpreted or read off. This last generally gives rise to much

opening for skill and sagacity; for ... in most cases there are many ways
of reading off the answer. It then becomes a question of tact and judgment
which of these is the simplest and best. ... I hardly see how any machine

can hope to assist us except in the third of these steps; so that it seems very
doubtful whether any thing of this sort really deserves the name of a logical

engine.

Venn goes on to say that "So little trouble is required to sketch

out a fresh diagram for ourselves on each occasion, that it is really

not worth while to get a machine to do any part of the work for us.

Still as some persons have felt much interest in such attempts, it

seemed worth while seeing how the thing could be effected here."

He then suggests several mechanical procedures of his own. First,

the use of a rubber stamp to form the intersecting circles. Second,

draw the desired diagrams on thin board, then cut out the compart-

ments so they fit together like a

jigsaw puzzle. Instead of shading

compartments, you now can re-

move the cell in question. Third,

he gives a picture (reproduced in

Figure 80) of what he calls a

"logical-diagram machine."

This machine is merely a three-

dimensional form of the jigsaw

device. The individual pieces are

parts of intersecting elliptical cyl-

inders held in place at the top

of a box by sixteen pegs on the

sides of the box. To eliminate a cell, you pull out the proper peg,

allowing the wooden piece to drop to the bottom of the box. The

box is turned upside-down to bring all the blocks back into position

for a fresh problem. The picture shows a cross section of the box

looking down from above. You will note that the outside compart-

ment is here represented by a closed cell held in place by the top

nn n n"L

UU u u

Figure 80.
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left-hand peg. Venn was of the opinion that this device "would

succeed in doing all that can be rationally expected of any logic

machine."

As Venn himself recognized, his logic box was simply a mechani-

cal way of handling a Venn diagram. It is surprising that Venn did

not think of placing counters on his diagrams, after the manner of

Lewis Carroll's method, since this is much simpler than the con-

trivances he proposed and has the additional advantage that

counters of two different colors may be used one to show that a

cell has no members, the other to indicate cells involved in particu-

lar ("some") assertions. Although it is true that Venn's devices can

perform any of the operations possible on Jevons's logic machine,

Venn would not permit himself to appreciate the fact that Jevons's

machine was a pioneer effort to work out a mechanical laborsaving

method in which desired operations could be effected merely by

pressing keys.

The first real advance over Jevons's machine was made by Allan

Marquand (1853-1924). The son of Henry G. Marquand, a promi-
nent American philanthropist and art collector, Allan Marquand
began his teaching career as a fellow in logic and ethics at Johns Hop-
kins University. He became a tutor of logic at Princeton University
in 1881, but soon abandoned logic to become (in 1883) a pro-
fessor of art and archeology at Princeton. His books include a Text-

book of the History of Sculpture, 1896; Greek Architecture, 1909;
and several books on della Robbia, the famous Florentine sculptor,

and his family.

The first logical device built by Marquand is of no special in-

terest. It was merely a more elaborate version of Venn's logical-

diagram machine, making use of 256 separate wooden parts to

accommodate eight terms. In 1881 he turned his attention toward
a machine of the Jevons type, describing the final outcome of his

labors in a brief article titled "A New Logical Machine," in the

Proceedings of the American Academy of Arts and Sciences, Vol.

21, 1885, p. 303. The following account of his machine is taken

from this paper.

A crude first model was built by Marquand some time in 1881;
then during the winter of 1881-1882 an improved and final model
was constructed for Marquand by his friend Prof. Charles G. Rock-

wood, Jr., of Princeton's department of mathematics. "The machine
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was made from the wood of a red-cedar post," Marquand tells us,

"which once formed part of the enclosure of Princeton's oldest

homestead."

Photographs of front and back views of this machine, as it ap-

pears today, are reproduced in Figures 81 and 82. In external

appearance it resembles a smaller version of Jevons's "logical

piano," standing only a trifle more than a foot high, about eight

inches wide, and six inches from front to back. The inner mecha-

nism (Figure 82) consists of an ingenious arrangement of rods and

Figure 81. Marquand's logic machine, front

view.

Figure 82. Marquand's logic machine, back

view, opened to show interior.

levers connected by catgut strings, together with small pins and

spiral springs.

Like Jevons's machine it is designed for four terms. The sixteen

possible combinations of true and false terms are represented by

sixteen rotating pointers on the face of the machine. These pointers

are labeled in accordance with Marquand's logic diagram which he

had described in a paper published earlier in 1 88 1 (see Figure 33 ).

The method of labeling is easily understood. The pointer in the

upper left comer (see Figure 81) stands for ABCD. Next to it on

the right AbCD, then aBcD, and so on until abed is reached at the

lower right corner. Each pointer can be raised to a horizontal posi-

tion, pointing leftward, to indicate that the combination is "true"
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(consistent with the premises), or dropped to a vertical position,

pointing downward, to indicate a "false" combination (one ex-

cluded by the premises).
The keyboard consists of ten keys only, labeled as shown in

Figure 83.

A n B b o . c c d D
The four terms (capital letters)

and their negatives (lower case let-

ters) are represented by eight keys,

the keys for the negatives being

shorter than the others. The remain-

F
.

ure 83 ing two keys, marked 1 (the "restor-

ation key") and (the "destruction

key"), are called "operation keys." Their use will become clear in

a moment.

Before a problem is fed to the machine, all pointers must first be

raised to horizontal position. This is done by pressing the two oper-

ation keys simultaneously, then releasing first the 1 key, then the

key.

Each premise is now fed to the machine in negative form. For

example, suppose we wish to impress upon the machine the premise
A 3 B. This can be restated in negative form by saying that a true

A cannot combine with a false B. In other words, all combinations

containing A b must be eliminated from the face of the machine.

This is simply done as follows. We press simultaneously the keys
for A and b; then while still holding them down with one hand, the

other hand presses the 0, or destruction, key. Immediately all pointers

representing combinations containing Ab drop to a vertical position.

The face of the machine then appears as shown in Figure 84.

A Q Each succeeding premise is handled
B b B b

ft
in exactly the same manner. After all

< o o ^ o < o D
.

J

J, premises have been fed to the machine,
the pointers indicate what combina-

tions, if any, are consistent with the

premises, and desired conclusions can

be obtained by inspection of the ma-
chine's face. In principle, therefore,

the machine operates as does Jevons's

device by identifying the valid lines

84 - of Jevons's "logical alphabet" or what
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in modern terms would be called the "true" lines of a truth table

for the combined premises.

The machine is a decided improvement over Jevons's. By aban-

doning the clumsy equational form which Jevons used, Marquand
was able to cut down the number of keys to less than half of the

21 keys required on Jevons's model. In addition, the number of

steps for feeding each premise to the machine is enormously re-

duced. A third advantage is that the simplified interior mechanism

makes it possible to construct similar machines for more than four

terms without enlarging the device to giant, unwieldy proportions.

Charles Peirce, in an article on "Logical Machines" (American
Journal of Psychology, Vol. 1, November, 1887, p. 165), sum-

marizes these advantages in the following interesting and character-

istic manner:

Mr. Marquand's machine is a vastly more clear-headed contrivance than

that of Jevons. The nature of the problem has been grasped in a more

masterly manner, and the directest possible means are chosen for the solu-

tion of it. In the machines actually constructed only four letters have been

used, though there would have been no inconvenience in embracing six. In-

stead of using the cumbrous equations of Jevons, Mr. Marquand uses

Professor Mitchell's method throughout.
1 There are virtually no keys except

the eight for the letters and their negatives, for two keys used in the process

of erasing, etc., should not count. Any number of keys may be put down to-

gether, in which case the corresponding letters are added, or they may be

put down successively, in which case the corresponding combinations are

multiplied. There is a sort of diagram face, showing the combinations or

logical products as in Jevons's machine, but with the very important dif-

ference that the two dimensions of the plane are taken advantage of to ar-

range the combinations in such a way that the substance of the result is in-

stantly seen. To work a simple syllogism, two pressures of the keys only are

necessary, two keys being pressed each time. A cord has also to be pulled

each time so as to actualize the statement which the pressure of the keys

only formulates. This is good logic: philosophers are too apt to forget this

cord to be pulled, this element of brute force in existence, and thus to re-

gard the solvet ambulando as illogical. To work the syllogism with Mr.

Jevons's machine requires ten successive movements, owing to the relatively

clumsy manner in which the problem has been conceived.

Like Jevons's machine, Marquand's does not readily handle syllo-

gisms involving "some" statements, but syllogisms with universal

premises are taken care of .easily. The premises of Barbara, for ex-

ample All A is 5, All B is C are fed to the machine in the

negative form of:
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Ab =
Be =

The horizontal pointers then indicate the following four valid

combinations:

ABC
aBC
abC
abc

If we examine the above combinations for the relation between

A and C we find that only the combination of Ac does not appear.

This tells us that "All A is C," the traditional conclusion of Barbara.

To illustrate how the machine handles the prepositional calculus,

Marquand cites two novel problems. Although he does not speak

of them as examples of prepositional logic, they are problems that

today would be interpreted in truth-value rather than in class terms.

They show that Marquand grasped much more clearly than did

Jevons the ease with which prepositional logic could be handled on

a device of this type.

The first problem is stated by Marquand as follows :

Let us suppose that there are four girls at school, Anna, Bertha, Cora, and

Dora, and that someone had observed that:

(1) Whenever either Anna or Bertha (or both) remained at home,
Cora was at home; and

(2) When Bertha was out, Anna was out; and

(3) Whenever Cora was at home, Anna was at home.

What information is here conveyed concerning Dora?

To solve this problem we let A, B, C, D stand for the four girls,

each letter corresponding to the initial of a girl's name. A capital

letter indicates "at home" and a lower-case letter indicates the nega-
tive value of "not at home." (Since a girl must be either home or

out, we have here two mutually exclusive values which permit us

to put the problem into truth-value terms.)

The three premises, expressed by the symbols we have used in

previous chapters, are:

1. (AvB)OC
2. <- B D ~ A
3. C^A
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Converting these to the required negative form and using Mar-

quand's symbolism, we have:

1. Ac =0
Be =

2. bA=Q
3. Ca =

When these four statements are fed to the machine, the face will

appear as in Figure 85. An examination of the pointers, to deter-

mine what can be inferred about

Dora, reveals that: B b B

Q

b

D may combine with either III
ABC or abc.

<

d also may combine with either III
ABC or abc.

I I I
In other words, when Dora is at * * *

home the other three girls are either
T ? T

all at home or all out. And the same 4 I I

holds true when Dora is out.
Figure 85

Marquand's second problem is: if

A SEE B and B = C, what can be said of Dl The first premise elimi-

nates Ab and aB from the face of the machine; the second eliminates

Be and bC. Oddly enough, the face will then appear exactly as it did

after impressing upon the machine the premises of the preceding

problem (Figure 85). As Marquand puts it, the two problems seem

to be quite different but actually describe the "same state of the logi-

cal universe." They are merely two ways of expressing an identical

structure of relations involving four terms.

While preparing this chapter in 1956 I wrote to Princeton Uni-

versity in an effort to learn the present whereabouts of Marquand's
historic machine, the first device of its kind to be constructed in the

United States. No one in either the philosophy or psychology de-

partments had the slightest notion of where it might be. An exten-

sive search finally uncovered it in the stacks of the university library.

It had been presented to the library several years earlier by Mar-

quand's descendants, together with sixteen cartons of as yet un-



112 Logic Machines and Diagrams

classified scrapbooks, documents, and correspondence belonging to

Marquand.
James Mark Baldwin, in an article on "Logical Machines" (in

his Dictionary of Philosophy and Psychology, 1902) writes:

In 1882 Marquand constructed from an ordinary hotel annunciator an-

other machine in which all the combinations are visible at the outset, and the

inconsistent combinations are concealed from view as the premises are im-

pressed upon the keys. He also had designs made by means of which the

same operations could be accomplished by means of electro-magnets.

Nothing whatever is known of the "hotel annunciator" machine,

but a circuit design for its electromagnetically operated version was

recently found among Marquand's papers by Professor Alonzo

Church, of Princeton's mathematics department. (A photostat of

Marquand's circuit diagram is reproduced in Wolfe Mays's article,

"First Circuit for an Electrical Logic Machine," Science, Vol. 118,

Sept. 4, 1953, p. 281; and the diagram has been analyzed in detail

by George W. Patterson, Moore School of Electrical Engineering,

University of Pennsylvania, in an unpublished paper, "A Nine-

teenth-century Electro-mechanical Logical Calculator.") This is

probably the first circuit design ever drawn for an electrically oper-

ated logic machine, though there is no evidence that the machine

was ever actually built. Dr. Mays gives 1885 as the probable date

the design was drawn. The wiring diagram is of no special interest,

since it merely provides an electrical method by which the keys of

Marquand's machine can turn the pointers. Had small light bulbs

been available at the time, Marquand would undoubtedly have used

them instead of his electromagnetically operated pointers.

Mention also should be made of another logic device invented

by Marquand and described in his article "A Machine for Pro-

ducing Syllogistic Variations," Johns Hopkins University Studies in

Logic, edited by Charles Peirce, 1883, p. 12. (A paper by Mar-

quand on "The Logic of the Epicureans" also appears in this vol-

ume.) By turning a crank, the face of this machine exhibits in turn

the eight different forms in which a syllogism can be expressed,

assuming that each statement of the syllogism has two "contra-

posed" forms (e.g., "All A is 5" or "All not-J5 is not-^ ) . The device

would have delighted Ramon Lull, for it is merely an elaboration

of his concentric rotating circles. By placing six rollers together in

such a way that, when one was cranked, all of them would turn,
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the machine automatically runs through a Lullian table of exhaus-

tive combinations for three statements, each of which is expressible
in two forms. As Marquand points out, the same device can be used

for other combinatorial purposes such as running through Jevons's

logical alphabet for three terms.

The next advance in machines of the Jevons type seems to have

been made by an Englishman named Charles P. R. Macaulay, about

whom I have been able to learn nothing. In 1910, when he was

living in Chicago, he applied for an American patent on a four-

term logic machine. It was issued in 1913 as Patent 1,079,504

(obtainable for 25 cents from the U.S. Patent Office, Washington,

D.C.). The machine combines, it seems to me, the best features of

both Jevons's and Marquand's machines, with other features that

make for an extremely compact and easily operated device. It is a

small boxlike structure with three rows of windows through which

various combinations of terms may be seen. Tilting the box in either

of two directions causes interior rods to slide back and forth. Eight

projecting pins on the left side of the box stand for the four terms

and their negations. Pressing these pins causes the rods inside to

lock in various positions so that, when the box is tilted, desired

combinations can be brought into view. Consistent combinations

appear in the upper row of windows, inconsistent combinations in

the lower row. In the center row one can temporarily place com-

binations involved in particular ("some") propositions, a distinct

improvement over both the Jevons and Marquand machines.

In his lengthy description of the machine, Macaulay explicitly

points out its use for prepositional logic. "The letters," he writes,

"may be made to denote not only things, but also qualities, the truth

of propositions, or any circumstances whatever." To illustrate, Ma-

caulay poses the following problem: "Four hunters, A, B, C and D,

occupied a camp in different ways for seven days. (1) On days

when A hunted, B did not. (2) On days when B hunted, D also

hunted, but C did not. (3) On days when D hunted, A or B hunted.

How did they dispose themselves during the week? On how many

days did D hunt and with whom?" As an interesting exercise, the

reader may wish to solve this problem by Jevons's logical alphabet,

or by one of the diagrammatic methods described earlier.

Although traditional syllogisms can be tested on machines of the

Jevons type, the handling is, as we have seen, rather awkward. Since
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Stanhope invented his demonstrator a number of other contrivances

have been designed specifically for syllogisms, but none more fan-

tastic than one developed by Annibale Pastore (b. 1868 ), professor

of philosophy at the University of Genoa, Italy, and author of sev-

eral books including one on The Philosophy of Lenin. The device,

which strongly resembles a Rube Goldberg contraption, was con-

structed in 1903 with the aid of physics professor Antonio Gar-

basso. It is explained in preposterous detail in Pastore's work Logica

Formale, dedotta della consider-azione di modelli meccanici (For-

mal Logic Deduced from the Consideration of Mechanical Models) ,

published in Turin, 1906. 2

Pastore's machine is an attempt to translate the structure of

syllogistic reasoning into physical movement somewhat in the man-

ner of an analogue computer. It consists essentially of a triangular

arrangement of three groups of wheels representing the subject,

predicate, and middle terms, and a complicated arrangement of dif-

ferential gears, screws, weighted pendulums, and endless belts that

join the wheels in a manner appropriate to the syllogism under

consideration. Each group of wheels consists of one large wheel,

representing "all" of its class, and two smaller wheels representing
"some" of the same class. A universal affirmative proposition (All

A is B ) is indicated by running a belt from the large wheel of A to

a small wheel of B so that, when A is turned, B will turn in the same
direction. When two connected wheels rotate in opposite directions,

a negative relation is indicated. Thus the universal negative (No A
is B) is obtained by joining the large wheels of A and B with a belt

that crosses itself between the wheels. An uncrossed belt joining two

small wheels is the particular posi-

tive (Some A is B) and a crossed

belt from a small wheel to a large

one is the particular negative

(Some A is not 5). Thus the

syllogism: All A is B, No B is C,

No A is C, would have belts con-

necting the wheels as shown in

Figure 86.

If the belts represent a valid syllogism, cranking wheel A will

cause all three wheels to rotate smoothly. If the wheels refuse to

rotate, the syllogism is not valid. The device is designed primarily

Figure 86.
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as a mechanical model of syllogistic inference rather than a machine
for disclosing the valid conclusions of a given pair of premises.
To make the wheels respond properly to the structure indicated

by the belts, a complicated arrangement of differential gears is nec-

essary. For example, when a large wheel rotates, it must move the

two smaller wheels on the same axle (since if all A is B, then some
A must be B ) , but when a small wheel rotates, the large wheel must
remain stationary (since if some A is B, we know nothing about all

of A). But this is not all. To extend the power of the machine be-

yond the bounds of the traditional syllogism, Mr. Pastore added a

second small wheel to each axle so that "some A is B" and "some
A is not B" could be represented simultaneously by permitting the

two small wheels of A to rotate in opposite directions while the

large wheel remained motionless (since we know nothing about all

of A).

A chart at the back of Pastore's book shows the belt connections

for 256 possible combinations of syllogistic premises and conclu-

sions. Of the 256, Pastore finds 32 valid syllogisms instead of the

usual 24. This increased number is due to the fact that the machine

recognizes as valid such syllogisms as: Some A is B, Some B is C,

Some A is C, provided that the "some" is regarded as the same

"some" in both premises. Of the 24 traditionally valid syllogisms, a

few which require the assumption of non-empty classes are not

validated by the machine.

As clumsy as Pastore's contrivance is, it does suggest that there

are probably a wide variety of ways in which formal logic can be

translated into simple mechanical phenomena.
8 There is no reason

why, for example, rotating wheels cannot be used to express the

prepositional calculus. Each term would be represented by a wheel

that rotated in one direction if the term were true, in the opposite

direction if false. The relation of equivalence would be fed to the

machine by setting gears so that, if either of two wheels were turned,

the other wheel would turn in the same direction. "A implies B"

would require that, when wheel A turned in a true direction, B

would turn the same way, and when B turned in a false direction,

A would turn likewise; but otherwise, turning either wheel would

have no effect on the other. In similar fashion, the other binary re-

lations could be expressed by suitable gear arrangements. If such a

machine were fed a set of consistent premises, the wheels should all
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rotate in directions indicating the truth or falsity of the various

terms. Indeterminate terms would be revealed by stationary wheels.

Contradictions would result in locked wheels, and theorems would

be disclosed by wheels that all rotated in a true direction only, re-

gardless of which wheel was turned. Simple arithmetical calculating

machines have been based on rotating disks (including one invented

by Lord Stanhope), but whether this approach would result in a

logic machine efficient enough to be of interest is an open question.

All the mechanical devices considered thus far, including Jevons's

machine, are decidedly inferior in speed and power to the electric

machines constructed in recent years. But before turning to this last

and most exciting phase of our history, it remains to glance briefly

at a grid principle by which cards can be superimposed to arrive

at solutions of elementary logic problems.
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and only if the other end is raised. But if the fulcrum is at the center, a

weight on either end is raised only when the other end is lowered, a precise

analogue of exclusive disjunction. A typewriter contains hundreds of working

parts that can be considered expressions of "and," "or," "if, then," and other

logical relations. This is what Peirce had in mind when he wrote, ". . . every
machine is a reasoning machine, in so much as there are certain relations be-

tween its parts, which relations involve other relations that were not expressly
intended. A piece of apparatus for performing a physical or chemical experi-

ment is also a reasoning machine, with this difference, that it does not depend
on the laws of the human mind, but on the objective reason embodied in the

laws of nature. Accordingly, it is no figure of speech to say that the alembics

and cucurbits of the chemist are instruments of thought, or logical machines."

(Charles Peirce, "Logical Machines," American Journal of Psychology, Vol. 1,

November, 1887).



7: Window Cards

B,*oth the Stanhope demonstrator and the Pas-

tore machine operate along mechanical lines that are in some ways

analogous to the formal structure of syllogistic inference. If one is

unconcerned with such analogy, desiring only a device that will pro-

duce the required conclusion from any pair of premises, then it is

possible to invent a wide variety of simple gadgets for such purpose.

Perhaps the simplest is a set of cards, one for each possible premise,

with openings or "windows" cut on the cards in such a way that,

when one card is placed on top of another, the valid conclusion, if

any, will be revealed through one of the windows. When I designed

a set of such cards for my article on "Logic Machines" (Scientific

American, March, 1952) I thought I was certainly the first person

ever to waste time on such a curious project. Later I discovered that

the idea was at least seventy years old! Jevons, in his Studies in De-

ductive Logic, Chapter XI, describes a set of syllogistic window

cards invented by a Mr. Henry Cunynghame. These cards are repro-

duced in Figure 87.

The working of Cunynghame's cards is easily explained. The

premises appear at the top of each card. Major premises (in classi-

cal logic the major premise relates the middle term M to the predi-

cate P of the conclusion) are at the top of eight cards; minor prem-

ises (relating the middle term M to the subject S of the conclusion)

are at the top of the remaining eight. If we pick any major card,

place a minor card on top, then all valid conclusions (if any) will
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CU'NYNGHAME'S SYLLOGISTIC CARDS.

MAJOR CARDS.

All M is P

All SisP

Some S is P

NoMlsP

No SisP

Some S is not P

Some M is P

Some 5 is />

All P is M

No vS is P

Some 5 is P

Some S is not P

NoS'isP

Some 5 is not P

Some P is M

Some 6" is /*

MINOR CARDS.

Some Mis not P

Some 6" is not P

Some P is notM

All 5 is M No S is AT Some S is AT Some 5 is notM

All Jlf is S No Af is S Some M is 5" Some AT is not 5

Figure 87. Grid cards for syllogisms. (From Studies in Deductive Logic, 1884, by William S.

Jevons.)
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Window Cards 1 19

appear in the window or windows of the upper card. Cunynghame
applied the same principle to a metal device consisting of a hollow

cylinder, with windows, that could be rotated around an inner solid

cylinder. Jevons gives a brief description of it in the chapter just

cited. A third device using the grid principle was presented by

Cunynghame to the Science Museum, South Kensington, London,
in 1885 but has not been on exhibition there for many years. This is

simply a flat projection of the cylindrical model; a kind of circular

slide rule. One cardboard disk, with slotted windows, turns upon a

larger cardboard disk. Major premises appear on the circumference

of the larger circle, minor premises on the circumference of the

smaller one. When two premises are brought together, the conclu-

sions, if any, appear in the openings below the minor premise. In a

sense, it is a Lullian device, for the circles provide all possible com-

binations of premises with the additional feature of pointing out

which combinations yield valid conclusions and what those conclu-

sions are.
1

None of these variations, however, exhibits in its construction or

operation anything that resembles the formal structure of class logic.

If you arbitrarily assume that certain invalid syllogisms are valid,

and certain valid ones not, only a few alterations in the devices are

necessary in order to obtain the new answers as readily as the old.

For this reason, they have less logical interest than devices which

may be clumsier to use, but which operate by principles analogous

to the structure they are designed to analyze.

My set of cards for the Scientific A merican article is reproduced

in Figure 88. In some respects these cards are simpler than Cunyng-

hame's, in other ways more elaborate. Since the statement "No A is

B" means the same thing as "No B is /4," and similarly, "Some A
is B" is the same as "Some B is /4," 1 combined these equivalent

statements on the same card. (Of course Cunynghame could have

done the same, thus reducing the number of his cards from sixteen

to twelve.) By adding an additional "conclusion card" with four

windows for the four possible conclusions, I was able to prepare

the premise cards so that it does not matter which card is put on top

of the other. The two cards are simply placed together, the conclu-

sion card put on top, and any window that shows solid black indi-

cates a valid conclusion.

To make this clearer, suppose we wish to determine if the fol-
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Window Cards 121

lowing syllogism, voiced by the Patchwork Girl in L. Frank Bauirfs

The Lost Princess of Oz, is valid:

Somebody in Oz stole Ozma.

Only wicked people steal.

Therefore, someone in Oz is wicked.

We can state the conclusion more formally as "Some of the

people in Oz are wicked people." "People in Oz" is therefore our

subject (5), and "wicked people" the predicate (P). The premise

containing P is traditionally regarded as the major premise. In this

case it can be stated, "All people who steal are wicked people/
1

The

minor premise, containing S, may be phrased, "Some of the people

in Oz are people who steal."

Our syllogism is, therefore, of the mood IAI (Dimarls) in the

first figure:

All M is P

Some S is M
Some S is P

To test this, we find the two premise cards and place them to-

gether, either above the other. When we cover them with the con-

clusion card we find that the window for "Some S is P" is solid

black. This confirms the syllogism and indicates that the Patchwork

Girl was not so scatterbrained as her behavior and conversation

often suggested.

A more elaborate set of syllogism cards is pictured in Figure 89.

To test a syllogism with them, pick out the desired major-premise

card, put on top of it the desired minor-premise card, and on top

of both, the desired conclusion card. If the syllogism is valid, the

letter "T" will appear in one of the windows. If the syllogism

is invalid, whatever formal fallacies are involved will appear along

the right margin of the cards.

Grid cards can also be designed to operate on the same basis as

the Venn diagrams (or Jevons's logical alphabet). They are awk-

ward to use on syllogisms, but work fairly well with elementary

problems in the propositional or truth-value calculus. If there are

more than three terms, however, the number of cards required is so

large that they serve no useful purpose.

Figure 90 shows a set of triangular-shaped cards of this type for
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Window Cards

I. BASE CARD 2. TRUE 3. FALSE

123

7. EXCLUSIVE
DISJUNCTION

Figure 90, Triangular grid cards for prepositional logic. Shaded areas are cut out.

handling up to three terms in the prepositional calculus. Premises

must be no more complicated than a binary relation or the assertion

of truth or falsity for a single term. Only nine cards are shown in

the illustration, but you should have on hand several duplicates of

each card except the first one, since the same card may be required

for more than one premise.

Cards 2 and 3 assert the truth value of a single term. Cards 4

through 9 are for binary relations. The basic form of the relation is

shown on the edge, with less commonly encountered equivalent

statements lettered on the same edge inside of parentheses. To
solve a-problem, pick out the required card for .each premise, turn-

ing the card so that the premise appears on the bottom edge or base
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of the triangle. After all the premises have been assembled (it does

not matter in what order), place them on top of card 1. Combina-

tions visible through the windows are combinations consistent with

the premises. Inspecting them will tell you what can be inferred

about the terms.

A sample problem should make this procedure clear. Suppose we

wish to determine, if possible, the truth values of B and C from the

following premises:

A is true (A)
If B is true, then A is false (B D ~ A )

Either B or C or both are true (B v C)

These premises are found on cards 2, 6, 9. We turn each card

until the desired statement is at the bottom, then place all three

cards on card 1. Only a single combination, A ^BC, is visible

through the grid. We therefore infer that B is false and C is true.

When no combinations at all are visible through the windows it

indicates that at least two premises are contradictory. The entire

procedure corresponds exactly to Jevons's elimination method and

to the use of Venn circles for truth-value problems. Discussions of

these procedures in Chapters 2 and 3 may be reviewed for addi-

tional details on how to handle the triangular cards.

Window cards have little value except as novelties, although they

suggest how easily a punch-card machine could be devised that

would take care of more complicated problems of formal logic with

considerable efficiency. The most promising line of development,

however, is offered by the recent electric network machines which

provide the subject matter of the next chapter.

References

1. It was probably a circular device of this type that was constructed some time

before 1935 by the well-known American psychologist Clark L. Hull. In his

article on "The Mechanism of the Assembly of Behavior Segments in Novel

Combinations Suitable for Problem Solution," Psychological Review, Vol. 42,

May, 1935, p. 219, he writes that he once constructed a "simple mechanism
of sliding disk-segments of sheet-metal which will solve automatically, i.e.,

exhibit the conclusions logically flowing from all of the known syllogisms and

which will automatically detect all of the formal fallacies." Hull adds that he

has not yet published a description of the device. I have been unsuccessful

in attempts to learn more about its construction.



8: Electrical Logic Machines

f solving problems in formal logic were as impor-
tant to society as solving problems in arithmetic, we would long ago
have developed models of logic machines as compact as the Comp-
tometer and the electrical adding machine. Unfortunately, problems
in formal logic, too difficult to be solved in the head, are seldom

encountered in either everyday life or the world of business. As a

consequence, the construction of logic machines has been largely

a recreational task. The Stanhope demonstrator, the Pastore device,

even machines of the Jevons type must be regarded as crude first

attempts, analogous to Napier's bones and the early arithmetical

machines of Leibnitz, Pascal, and Babbage. At present, logic ma-

chines that operate by electric relays or electronic switching ele-

ments offer the most promising future, but even in this domain

current research is still in a crude beginning phase.

Who was the first to build an electrical logic machine? As we
have seen, Allan Marquand, in about 1885, saw the value of oper-

ating his logic machine electrically and even drew a circuit pattern

for it, but there is no evidence that this version of his device was

ever actually constructed. As far as I have been able to discover,

the first man actually to build an electrical logic machine was Ben-

jamin Burack, of the department of psychology, Roosevelt College,

Chicago. His article on "An Electrical Logic Machine," Science,

Vol. 109, June 17, 1949, p. 610, was the first published descrip-

tion of the device, although the machine was built and demonstrated

as early as 1936.
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Burack's machine is designed to test all syllogisms, including

hypothetical and disjunctive forms, and also to test the conversion

and obversion of propositions. To facilitate carrying, it was con-

structed inside a small suitcase (Figure 91). The lower part of this

case contains thin plywood
blocks lettered to represent vari-

ous class propositions. To test a

syllogism, the three required

blocks are selected and placed in

three spaces on the left side of

the panel that fills the upper half

of the suitcase. Metal contact

areas on the backs of the blocks

establish electrical connections

between contact points on the

panel so that, if the syllogism is

invalid, one or more bulbs light

up on the right side of the panel.

The bulbs are labeled to indicate

seven basic fallacies of the cate-

gorical syllogism, three fallacies

for the hypothetical, one for the

disjunctive, one for false conver-

sion, and one for false obversion. An additional bulb indicates that

the electric current (either battery or line) has been established.

Since Burack first exhibited his machine, so many other types of

electrical syllogism machines have been built, most of them by uni-

versity students interested in logic and cybernetics, that it would be

a difficult task to gather details about even a small portion of them.

It is even possible to build a simple syllogism machine with the

parts of a Geniac kit an electrical brain construction kit currently

sold by Berkeley Enterprises, Inc.
1

None of these syllogism machines has a network that corre-

sponds in any formal way with the structure of class logic. They are

like the window cards of the previous chapter, using electrical con-

nections, instead of the presence or absence of openings, to screen

off invalid conclusions and transmit valid ones. When, however, we
turn to the electrical machines that have been designed for the

propositional calculus we enter an altogether different domain.

Figure 91. Burack's syllogism machine. (Cour-

tesy of Benjamin Burack.)
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Here we find a striking analogy between the wire networks and the

formal structure of the logic that the networks manipulate.

The close correspondence between electrical network theory and

the propositional calculus seems to have dawned on many minds

independently," In the United States the first published paper on the

topic was the historic article, "A Symbolic Analysis of Relay and

Switching Circuits," by Claude E. Shannon, now a staff member of

the electronics research laboratory, Massachusetts Institute of Tech-

nology. Based on the author's 1937 Master of Science thesis at

M.I.T., it appeared in December, 1938, in the Transactions of the

American Institute of Electrical Engineers, Vol. 57, p. 713. In this

paper Shannon first explains how relay and switching circuits can

be expressed by equations. The calculus for manipulating these

equations is then shown to be isomorphic with the propositional

calculus of symbolic logic. The values of true and false correspond
to the open and closed states of a circuit; disjunction ("or") is indi-

cated by series connections, and equivalence ("if and only if") by
two circuits that open and close together.

Shannon's paper laid the groundwork for the construction of

truth-value logic machines and also suggested new methods by
which circuits could be designed and simplified. An unnecessarily

complex circuit can be translated into the propositional calculus,

the statement "minimized" (reduced to simplest form), then trans-

lated back to circuit design. Or a new circuit can be devised by

stating the desired characteristics in the simplest possible logical

form, then converting the statement to a circuit design. Shannon's

paper also cast light on the logical aspects of computer program-

ming. Giving orders to a giant brain, telling it to perform certain

steps under certain circumstances, is more a logical than arith-

metical matter, and the new electronic computers are being con-

structed with more and more attention paid to special circuits

designed specifically to handle the logical aspects of the computer's

work. :i

Since Shannon's article appeared, rapid advances have been made

in the application of symbolic logic to circuit theory, and scores of

important papers on this topic have been published in engineering

journals. Once again in the history of science a subject of seemingly

academic interest only, pursued entirely for its own sake, suddenly

turns out to have enormous practical value. As we move into the
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new industrial age of electronic automation, there is every reason

to believe that the dull, detailed work of the symbolic logicians will

assume increasing practical importance in the designing of efficient

circuits for the more complicated automata.

It is possible to adjust a general-purpose digital computer so that

it can solve problems in the prepositional calculus. It also is possible

to alter or add to the circuits of other types of computers so that

they can do the same. But numerical computers of all types, from

office adding machines to the giant brains, are not designed for han-

dling formal logic and cannot be expected to operate as efficiently

in this area as a computer constructed specifically for a logical cal-

culus.

The first electrical machine designed solely for propositional

logic was built in 1947 by two undergraduates at Harvard, William

Burkhart and Theodore A. Kalin. They had been taking a course in

symbolic logic with Professor Willard V. Quine and they had
chanced upon Shannon's paper on the relation of such logic to

switching circuits. Weary of solving problems by laborious paper
and pencil methods, and unaware of any previous logic machines,

they decided to build themselves an electrical device that would
do their homework automatically. The result, at a cost of about

$150 for the materials, was a small machine now known as the

Kalin-Burkhart machine capable of handling problems involv-

ing up to twelve terms in the propositional calculus (Figure 92).
The machine was first described in Edmund C. Berkeley's
Giant Brains, 1949, from which the following brief account is

taken.

Premises are fed to the Kalin-Burkhart machine by setting
switches which establish a circuit pattern isomorphic with the logi-
cal structure of the combined premises. The machine then scans the

entire truth table for this structure, taking the lines one at a time
at a rate of about one-half second per line. Each line is indicated on
the face of the machine by the pattern of lights in a row of twelve
red bulbs that correspond to the twelve terms. A glowing bulb indi-

cates that the term is true. A yellow bulb lights whenever a row of
the truth table is valid, does not light when the row is false. Thus
by watching the machine and stopping it whenever a truth-table line

is valid, one can copy down the pattern of true and false terms as

indicated by the twelve red bulbs. The machine can also be set to
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Figure 92. The Kalin-Burkhart machine, front and rear views, (Courtesy of William Burkhart.)

stop automatically when the yellow light is on, but must be started

again manually.

At present the machine is in the possession of Burkhart, a mem-

ber of the staff of Arthur D. Little, Inc., a research organization in

Cambridge, Mass. (Kalin is now chief of the computer laboratory,
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Air Force Cambridge Research Center, Hanscom Field, Bedford,

Mass.) Although the machine is of great historic interest, marking
a major turning point in the development of logic machines, so far

no one has been able to find the slightest practical use for it. It can
of course be used for solving problems of circuit theory, but unfor-

tunately by the time such a problem has been translated into a form
the machine can handle, and the answer translated back into circuit

theory, the same problem can be solved by pencil and paper. It is

interesting to note that when certain types of paradoxes are fed to

the Kalin-Burkhart machine it goes into an oscillating phase, switch-

ing rapidly back and forth from true to false. In a letter to Burkhart
in 1947 Kalin described one such example and concluded, "This

may be a version of Russell's paradox. Anyway, it makes a hell of a

racket."

It should be apparent to the reader that the Kalin-Burkhart ma-
chine is in a sense simply an electrical version of Jevons's logical

piano. Its great superiority over Jevons's device is its power to

handle many more terms, a power derived chiefly from the fact that

instead of showing valid lines of a truth table simultaneously
(creating an enormous space problem if many terms are involved)
it takes the lines in a serial time sequence. This also may be consid-
ered a weakness in the machine, for it requires an operator to copy
down the lines as they appear. This could be easily overcome, how-
ever, by adding to the machine an automatic recording mechanism.

The first electrical logic machine built in England, the Ferranti

logical computer, was one that handled three terms only in the

prepositional calculus. Like the Kalin-Burkhart computer it oper-
ated by producing truth tables although its construction, in 1949,
was on a different basis and made without knowledge of the work
of Burkhart and Kalin. The Ferranti machine was jointly devised

by Dr. Wolfe Mays, senior lecturer in philosophy at the University
of Manchester, where Jevons himself had once taught, and D. G.
Prinz of Ferranti, Ltd., Manchester. It was first described in a brief

paper by Mays and Prinz, "A Relay Machine for the Demonstra-
tion of Symbolic Logic," Nature, Vol. 165, Feb. 4, 1950, p. 197.
Plans for a more elaborate multivariable machine were announced
by Dr. Mays ("Note on the Exhibition of Logical Machines," Mind,
Vol. 60, April, 1951, p. 262) but the machine was never com-
pleted.
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Since 1949 scores of other electrical logic machines have been

built in various parts of the world, only a few of which have been

announced or described in journals. The following is a partial list

of references in English to some of these machines.

1. A three-term electronic device built at the National Physical

Laboratory, Pretoria, South Africa, that exhibits its solutions on an

oscilloscope screen. ("Venn Diagram Analogue Computer," by A.

Archer, Nature, Vol. 166, Nov. 11, 1950, and his article of the

same title, South African Journal of Science, Vol. 47, 1950, p.

133.)

2. A seven-term machine built in 1950 at the Edinburgh labora-

tory of Ferranti, Ltd., along lines similar to the Kalin-Burkhart

computer, though constructed like the previous Ferranti machine

without knowledge of the earlier American device. Pressing a button

labeled 'Think" starts the machine scanning a truth table for the

combined premises fed to the machine. The machine stops on all

"true" lines to permit copying, then starts scanning again when the

"Think" button is pressed. ("Mechanized Reasoning. Logical Com-

puters and Their Design," by D. M. McCallum and J. B. Smith,

Electronic Engineering, Vol. 23, April, 1951).

3. A four-term machine built in 1951 by Robert W. Marks,

New York, N.Y., and first announced in my article, "Logic Ma-

chines," Scientific American, March, 1952. To add a touch of

whimsy, Marks attached a wire recorder and loud-speaker to his

device so that it delivered its answers in a deep, impressive voice.

For example, if a tested theorem proved to be false, the machine

would say, "My name is Leibnitz Boole De Morgan Quine. I am

nothing but a complicated and slightly neurotic robot, but it gives

me great pleasure to announce that your statement is absolutely

false."

4. A "feedback logical computer" for four terms. By using a

feedback principle the machine is able to scan a problem in such a

way that it can find one answer (that is, one "true" line of a com-

bined truth table) without running through an entire truth table

until it encounters one. If all possible answers are desired, the prin-

ciple is of no value, but there are certain complex problems in

which only a single answer is demanded. In such cases the machine

cuts down the scanning time required to find this answer. The de-

vice was built in 1951 at the Edinburgh laboratory of Ferranti, Ltd.
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("Feedback Logical Computers," by D. M. McCallum and J. B.

Smith, Electronic Engineering, Vol. 23, December, 1951.)

5. A ten-term "truth-function evaluator" constructed at the Bur-

roughs Research Center, Paoli, Pa. It employs a logical notation

proposed by Jan Lukasiewicz in which all parentheses are elimi-

nated by placing the variables and connectives in order from left to

right according to the conventions of the notation. This has certain

mechanical advantages. It is interesting to note that the idea of using
the Lukasiewicz notation had occurred to Kalin as early as 1947.

In a letter to Burkhart, Aug. 13, 1947, he discussed this at some

length, expressing his opinion that "if there's ever a market for logic

machines, I'll bet this is the most practical way to set up any useful

(i.e., complicated) problem." ("An Analysis of a Logical Machine

Using Parenthesis-free Notation," by Arthur W. Burks, Don W.

Warren, and Jesse B. Wright, Mathematical Tables and other Aids

to Computation, Vol. 8, April, 1954, p. 53; reviewed in Journal of

Symbolic Logic, Vol. 20, March, 1956, p. 70. See also William

Miehle's paper, "Burroughs Truth Function Evaluator," Journal of

the Association for Computing Machinery, Vol. 4, April, 1957,

p. 189.) The machine is pictured in Figures 93 and 94.

6. A five-term machine constructed in 1954 by Roger W.
Holmes, professor of philosophy at Mt. Holyoke College, South

Hadley, Mass. (Associated Press photograph and caption, distrib-

uted to papers of Mar. 8, 1954.)
All the above-mentioneti machines are designed, I believe, to run

through truth tables. In the testing of theorems, with which so much
of modern logic is concerned, complete truth tables are essential,

but if a machine is built primarily for solving problems in which one
wishes to know what truth values for individual terms are uniquely
determined by a given set of statements, it should be possible to

construct a machine that dispenses entirely with the process of

scanning truth tables. It is true that truth tables can be scanned very

quickly if only a few terms are involved, but as the number of

terms increases, the scanning time increases at an accelerating rate.

Fifty terms, for example, present such a vast number of possible
combinations that even the fastest modern electronic methods would
be unable to cope with them in a reasonable length of time. It seems

likely, therefore, that logic machines will be constructed some day
on a basis that will eliminate the scanning procedure. Such ma-



Figure 93. Front and back views of the Burroughs truth-function evaluator. (Courtesy of Bur-

roughs Corporation.)

Figure 94. Control panel of the Burroughs truth-function evaluator. (From the Journal of the

Association for Computing Machinery, April, 1957.)
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chines would show instantly, after each new statement is fed to

them, the exact status of every variable. For example, each term

would have, say, a red bulb for true, a green bulb for false. If the

premises are consistent only with the truth of A, the falsity of B, but

do not determine the values of C and D, the machine would show a

red light for A, green for 5, but no lights for C and D. Contradic-

tions would be revealed by the simultaneous lighting of a term's red

and green bulbs. It might even be possible to construct such a device

without the use of expensive magnetic relays or electronic devices.

Although such a machine would be clumsy to use for testing theo-

rems, it would solve certain types of logical problems with greater

speed than any of the present machines that operate on a scanning

basis.

It was mentioned earlier that a general-purpose digital computer,

constructed for numerical calculations, can also be used for solving

problems in the prepositional logic. To do this it is first necessary

to assign binary numbers to the various truth functions. This is done

as follows:

We begin by constructing a table that will show the four possible

true-false combinations for two terms, A and B, using 1 for true,

for false. The left-to-right order in which the combinations appear
is arbitrary. Let us assume that the following order is adopted:

The relation of equivalence can now be represented by the fol-

lowing "designation number": 1001. This number simply tells us

that the first and fourth combinations in the above table (i.e., false-

false and true-true) are "true," whereas the other two combinations

(true-false and false-true) are "false." (The digits in the designa-

tion number correspond of course to the presence or absence of

shuttle lines in the network diagram explained in Chapter 3.) In a

similar manner we can arrive at a designation number for the other

binary functions:

AvB^O I I I

A^B^O I 1

5=1110
B^l I 1

A=^1 I 1
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It is now possible to adjust the digital computer so that, when it

is fed a series of premises that are expressed in binary numbers, it

will combine these numbers and arrive at a designation number that

expresses the combined premises. The Bones'
1

in this final designa-

tion number will then tell us what lines of the final truth table are

valid. In this way we can easily determine what can be inferred as

to the truth or falsity of the individual terms. In fact the first Fer-

ranti machine, designed by W. Mays, operated precisely this way,

handling three-term problems in just the way they would be han-

dled by a large digital computer.
To make the process a bit clearer, suppose we wish the computer

to give us the negation of a designation number. The machine has

only to replace each 1 in the number by a and each by a 1 . Thus

the negation of equivalence (1001) would be 0110, which proves

to be the designation number for the exclusive "or." (This process

is analogous to the method of negating a function in the network

diagram by removing all shuttles and drawing in the missing ones.)

If we wish the machine to give us a designation number for two

functions connected by "and," it does so simply by multiplying the

corresponding pairs of digits. For example: consider the following

two premises:

If and only if A is true, B is true.

A is true.

What can we say about B?

As we have seen, the designation number for the first premise,

which states the equivalence of A and 5, is 1001, The designation

number for the second statement is simply the binary number we

originally assigned to A, namely, 0101. If we now multiply the

corresponding pairs of digits we obtain 0001 as the designation

number for the combined premises. This number tells us that only

the last combination of the original truth table is true. Referring to

the original table we see that in this last combination B is 1
;
there-

fore we know that B must be true.

What we are doing, of course, is simply performing in a nota-

tional way the elimination steps that we perform when we use the

Venn diagrams for the propositional calculus, or Jevons's logic ma-

chine. If our premises contain a contradiction, our final designation

number will consist entirely of zeros, just as all the compartments
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become shaded in the Venn system or all combinations vanish from

the face of Jevons's machine. If the final designation number con-

sists entirely of ones, it indicates that all lines of the final truth table

are true. In other words, the statements fed to the machine consti-

tute a law or theorem that holds regardless of how its terms vary in

their truth or falsity.

The binary method can of course be extended to any number of

terms, each additional term doubling the number of digits required

in the basic designation numbers. Thus if we are working with three

terms we must assign an eight-digit binary number to each term to

represent an eight-line truth table:

01010101
00110011
00001111

Each binary function will also be an eight-digit number. For ex-

ample, equivalence of B and C would in this case be expressed as

11000011. Premises are combined by multiplying as previously ex-

plained to obtain a final designation number which can be checked

against the original table to determine what can be deduced about

the truth or falsity of individual terms.

If binary relations are linked by other functions than "and," then

other simple arithmetical rules will take care of them. The inclusive

"or" of disjunction is handled as ordinary addition except that when
1 is added to 1 the sum is also 1. The exclusive "or" is also handled

by addition, but in this case 1 plus 1 always gives 0. Equivalence is

handled like the exclusive "or" except that after the results are ob-

tained they are negated by changing every to 1 and every 1 to 0.

One example should be sufficient to make clear how these rela-

tions are handled. Suppose we wish to test the statement (A 3 B)
v (B D A ) to see if it is a tautology. The designation number for

the first implication is 1011, for the second implication 1101. To
connect them by the relation of inclusive disjunction we add the

numbers according to the rule given above, arriving at a final desig-

nation number of 1111. This tells us that every combination (or

"line" of the truth table) is true; hence the statement is a tautology.
Because the rules for handling prepositional logic in this binary

system are so elementary,
4

it is possible to adjust a general-purpose

digital computer so it can handle the logic easily, However, to ask
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a giant computer to perform such trivial tasks is like asking an

elephant to oblige you by picking up a toothpick. The giant brains

have much more important tasks on their hands, not to mention

the time it takes to set the machine properly for handling logical

problems.

In discussing Jevons's logic machine in an earlier chapter we
called attention to the annoying fact that it did not provide answers

in the simplest, most economical form. This is true also of the elec-

tric machines. The "answer" is usually a group of true lines from a

truth table which then call for considerable thought and calculation

before one can arrive at a simplified, condensed statement of what the

machine has discovered. For example, a machine may tell you that

the following combinations for two terms are valid: AB v ^AB v

A ~B. This disjunctive chain is identical with the simpler disjunc-

tive statement A v 5, but the machine is powerless to perform this

reduction.

The task of "minimizing" a complex disjunctive statement is often

an arduous one. There are algebraic ways of doing this as well as

chart methods,
5 but if there are a large number of variables, all

these procedures are tedious and time-consuming. The question

arises: can a minimizing machine be designed to do this job auto-

matically? Such a machine could be of great value in simplifying

costly relay circuits. A complex circuit could be translated into

logical terms, the logical statement minimized, then translated back

again into a circuit pattern.

How efficient such machines can be made is still undecided, but

there is no doubt that they can be built, for one has already been

constructed. The inventor, Daniel Bobrow, was attending high

school in the Bronx when he designed in 1952 what is probably the

world's first minimizing machine. The project was suggested to him
. by William Burkhart, with whom he had become acquainted, and

parts for the device were supplied by Edmund Berkeley, the ma-

chine's present owner. Bobrow's twelve-page privately printed de-

scription, "A Symbolic Logic Machine to Minimize Boolean Func-

tions of Four Variables, and Application to Switching Circuits,"

1952, remains the only description of the machine to date. Bobrow

is now attending the Rensselaer Polytechnic Institute, Troy, N.Y.,

where his interest has shifted from formal logic to other topics.

Nevertheless, his minimizing machine, limited though its powers are,
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may signal the opening of a new and important area in the field of

logic computers.
6
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9: The Future of Logic

Machines

he ease with which formal logics can be trans-

lated into electric circuits leaves little doubt that we are entering a

period in the history of logic that will witness a steady development
in the construction of more powerful and versatile electrically oper-

ated machines. This does not mean that the nonelectrical logic

device has reached any state of near perfection. The few that have

been constructed are obviously crude models, and there are prob-

ably all kinds of ways in which compact little logic machines, oper-

ating along mechanical lines, can be designed. But the power of

such devices is so limited that attempts to invent better ones will

likely be rare and undertaken only in a recreational spirit. The most

exciting, as well as the most potentially useful area of exploration
will undoubtedly be in the electrical and electronic direction.

Electrical syllogism machines are so easily constructed and their

uselessness so apparent that it is unlikely much thought will be given
to improving them. The few that have been built are almost devoid

of theoretical interest because their circuits bear no formal analogy
to the logical structure of the syllogism. For classroom purposes it

should be possible, however, to construct a class logic machine that

would have such formal analogy, and it is surprising that this has

not, to my knowledge, been attempted. Such a machine would not

be confined to the traditional S, M, P labels, with their limited prem-
ises and conclusions. It would take care of many more variables,

140
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and these could be applied to the terms of any number of class-

inclusion statements. When such statements were fed to the machine

it would show at once all the valid inferences that could be drawn.

Such a machine would have a network structure analogous to the

topological properties of the Venn circles. There is of course such

an analogy in the network of propositional calculus machines, since

the underlying structure of class and propositional logic is the same;

but the truth-value machines are not designed primarily for class

logic and a great deal of awkward translation has to take place

before such machines can handle even simple syllogisms with par-

ticular statements. It should not be difficult to construct electrical

machines designed specifically for class logic, and perhaps capable

(like the Stanhope demonstrator) of handling statements involving

"most," as well as statements with numerical quantifiers.

In the field of the propositional calculus, a great deal of experi-

mental work is now going on. We can reasonably expect that

simpler, more efficient, more powerful machines of this type will be

devised in the near future. Will such machines have any practical

uses? D. G. Prinz and J. B. Smith (in their chapter on logic ma-

chines in the anthology Faster Than Thought, edited by B. V. Bow-

den, 1953) suggest the following areas in which logic computers

may some day be put to use: checking the consistency of legal

documents, rule books of various sorts, and political policy state-

ments; checking signal operations at railway junctions; preparing

complex time schedules for university classes, plane landings at an

airport, and so on. The rapidly growing field of "operations re-

search" is riddled with problems for which logic machines may
prove helpful. Edmund C. Berkeley, in his description of the Kalin-

Burkhart machine (Giant Brains, 1949, Chapter 9), gives a com-

plicated problem involving insurance coverage and shows how

quickly it can be solved on the machine. Although none of these

areas has so far grown complex enough to justify the frequent use

of logic calculators, it may be that the employment of such devices

will come with increasing complexity and may even be a factor in

making such an increase possible.

It is amusing to speculate on what might happen to speculative

philosophy if progress in semantics should some day permit the

symbolic codification of systems of metaphysics. Fed with the re-

quired axioms and factual data, a machine might then, examine the
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system for inconsistencies, make new deductions, translate its ver-

bal expressions into the expressions of another system, and so on.

Whole new systems of philosophy and religion could be constructed

merely by twiddling a few dials and letting the machine explore

the implications of new combinations of axioms.

The vast domain of multivalued logics lies open to exploration

by electrical machines. As yet I know of no attempt to build ma-

chines for such purposes, but there seems to be no reason why this

cannot be done. The fact that electrical switching circuits are "two-

valued" (on or off) is certainly not a prohibitive factor. Multivalued

logics are all based on matrix tables and it is safe to say that circuits

can be designed for taking care of any type of matrix logic, even

when the circuits rely solely on two-valued switching connections.

(An exciting possibility is the use of continuously variable voltage

currents for multivalued machines.) Such logic machines would

have even less practical use at present than the two-valued devices,

but as tools for research in multivalued logics they might save the

professors a vast amount of time-consuming paper work and lead

to new discoveries in this fascinating, dimly understood realm. 1

It may also prove possible to construct machines for a logic of

strict implication along lines developed by C. I. Lewis and others;

machines to operate in the areas of the functional calculi of first,

second, and higher orders; and machines to handle various types of

relational algebras. There is no reason why any formal logic that

can be manipulated with symbols on paper cannot also be manipu-
lated by properly designed electric circuits. Unfortunately, in the

absence of practical applications for these higher and queerer logics,

there will be little incentive for the construction of expensive ma-

chines to handle them. Here and there, however, they may chal-

lenge the inventiveness of electrical engineers with a special interest

in logic, and the next few decades may see some brilliant creative

work along these lines.

In handling the functional calculi it is true that we encounter a

"decision problem" in establishing formulas, and Alonzo Church
has shown that there is no mechanical procedure by which all

formulas in such calculi can be proved. But there are solutions to

the decision problem in various areas of the calculi, and even

where no decision procedure is possible, a machine can still be

useful in checking proofs obtained by other methods.
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Is it possible to build a logic machine or program a digital

computer to solve logic problems in areas where there either is no
decision procedure, or the procedure is so complex and time-con-

suming that it is beyond the speed and capacity of present ma-
chines? The answer is certainly yes. A strenuous effort is now
under way

-
to develop a complex information-processing system

(called by its inventors the "logic-theory machine") capable of

searching for proofs of logic theorems in a manner closely analogous
to the way a human logician searches for such proofs, namely, by
trial and error, intuition, and sheer luck. The machine starts with a

few basic axioms in its memory, then tries to find a chain of

theorems that will eventually include the theorem it is trying to

prove. Various cues guide the machine along the most promising
lines, and the machine also modifies its search in the light of its trial

experiences.

Although the logic-theory machine has been worked out only for

the propositional calculus (in which proofs can also be found by
the exhaustive truth-table method) its general technique is appli-
cable to logics in which no decision procedure is possible, as well as

to the solving of all sorts of important problems in areas where a

decision procedure is not yet known, or if known, is beyond the

speed and power of today's machines (e.g., solving a difficult chess

problem). The system does not guarantee that a proof will be
found or a problem solved. But it does provide a technique that

duplicates the human logician's ability to discover proofs and solve

problems within a reasonable computing time in areas where ex-

haustive mechanical procedures are impossible, not known, or

impractical to adopt. The system is designed for digital computers,
and satisfactory empirical tests of it were made in 1956 with the

Rand Corporation's computer Johnniac.

We have already mentioned the utility of the two-valued logic
circuits in giving orders to giant mathematical calculators. Another

practical application of logic circuits to giant brains of the future is

in the wiring of mammoth memory machines for storing information
in such a way that needed data can be obtained quickly and easily.

In an article in the Atlantic Monthly ("As We May Think," July,

1945) Vannevar Bush, one of the pioneers of cybernetics, pro-

posed what he termed a "Memex" machine. It would store huge
amounts of information on microfilm or in electronic devices,
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elaborately cross-referencing the data by a process analogous to the

way ideas are associated in the human brain. If asked a question

about its data, a scanning system in the Memex would quickly

print and deliver all the relevant information. Logical circuits

would obviously play a large role in the construction of such a

machine.3

It is surprising to learn that a machine of this type (including

data recorded with probability values) was suggested as early as

1851 by a prominent British surgeon, Dr. Alfred Smee, in an odd

little book called The Process of Thought. The doctor confessed,

however, that the machine he had in mind would "cover an area

exceeding probably all London." Modern electronic methods for

storing information have, of course, made it possible to construct

such machines on a much smaller scale than the doctor would have

dared dream.

In his later years H. G. Wells became convinced that the ac-

celerating complexity of science had created a problem of com-

munication and storage of information that called for bold plans.

There are now several thousand periodicals published in the United

States dealing with biology alone. A scientist sometimes finds it

faster and cheaper to investigate a problem all over again than to

search this mountain of literature for records of previous research.

In his book World Brain, 1938, Wells argues for a gigantic clearing-

house into which all research reports would be channeled, and from

which information would be distributed to all parties concerned.

This "world brain" would keep data stored on microfilm and issue

vast encyclopedias of the sciences that would be kept constantly up
to date. It would be, Wells wrote, "a double-faced organization, a

perpetual digest and conference on the one hand and a system of

publication and distribution on the other. It would be a clearing

house for universities and research institutions; it would play the

role of a cerebral cortex to these essential ganglia."

Wells was writing before the development of cybernetics. Were
he alive today he would undoubtedly be pressing demands for a

"world brain" that would make use of electronic storage units and

logical circuits for its Gargantuan task of collecting, collating, and

distributing scientific information.

At present (1958) the Soviet Union has made greater strides

than any other nation toward Wells's vision. According to The New
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York Times, Nov. 25, 1957, Russia's All-Union Institute of Scien-

tific and Technical Information issues thirty-six journals of scientific

articles in translation, each journal appearing forty-eight times a

year. Another Russian agency, the Institute of Scientific Informa-

tion, publishes thirteen journals that summarize and index articles

in about 8,000 periodicals from more than eighty countries, includ-

ing 1,400 from the United States. Dr. D. R. Newth, a British zoolo-

gist, described this as the "really shattering thing" he saw on a recent

trip to Russia. "No other agency in the world is doing this job," he

declared. "I wish to God I could read Russian." (Quoted in Robert

Wallace's article, "First Hard Facts on All Russian Sciences," Life,

Dec. 16, 1957.)

By contrast, in 1957 only thirty of 1,200 Russian scientific jour-

nals received by the United States government were being translated

and made available. A group of American industries, after spending

$200,000 for five years of research on an electric circuit problem,
discovered that the answers had been published in Russia before

they had even started their work. A Soviet paper on hydrodynamics
was secretly translated seven times by seven separate government

agencies, each unaware of the other's effort. When Lloyd V. Berk-

ner, president of a New York research organization, was asked by
a Congressional committee to identify the agencies (The New York

Times, Jan. 21, 1958) he stated that he was not free to do so be-

cause the mere fact that the agencies were translating Soviet papers
was classified. There is reason to hope, however, that the Soviet

Sputniks have prodded the nation into taking- long overdue steps to

remedy this appalling situation. The time is rapidly approaching
when only electronic machines will be able to handle adequately the

task of translating, summarizing, indexing, and issuing abstracts of

this never-ending, constantly swelling flood of scientific information.

To logicians and mathematicians working in the field of inductive

logic and probability theory, the possible use of calculating ma-
chines opens up still further vistas for the imagination. Can a ma-
chine be designed that will survey a number of observational re-

ports and produce a reasonable hypothesis to explain them? Can a

machine be designed that will take a given hypothesis, correlate it

with all relevant observational data, and tell us the degree to which

the hypothesis has been confirmed? At the moment no one has

the slightest notion of how a machine could be constructed for
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either of these purposes. The invention of hypotheses, like the in-

venting of useful machines, is a mental process far from under-

stood. It obviously involves a special kind of intuitive ingenuity

to combine concepts in novel ways and to spot quickly the value of

certain combinations. An element of luck is also often involved.

Certainly there is no mechanical procedure by which creative work

of this sort can be done. A crude Lullian device may be used, as

explained in Chapter 1, to present the mind with novel combina-

tions of ideas, but if any great scientist or inventor has ever found

such a device useful, he has never publicly acknowledged it.

Nor is there any mechanical procedure for testing a hypothesis.

We do not even have a way of assigning a numerical value or

"weight" to a scientific theory. The most we can say of the general

theory of relativity, for instance, is that it has been confirmed to a

high degree, But exactly what do we mean by "high"? In this region

science can only make statements comparable with statements

made about heat in days before thermometers. Men were certain

that fire was "hotter" than ice, or that the weather was "colder"

in winter than summer, but when it came to deciding whether one

summer day was hotter than another, there was room for argu-

ment. Progress in science has always depended on the quantifica-

tion of data, the assigning of numbers to phenomena so that changes
can be measured accurately and described by equations. It may be

that scientific theories will never submit to measurement of this

sort, but it would be rash to assume this. A great deal of abstruse

technical work is currently being done on this problem. If inductive

logic takes the shape of a workable calculus, even if only in re-

stricted areas of science, there is a good chance that machines can

be devised for handling it.

Rudolf Carnap, in his monumental Logical Foundations of Prob-

ability, 1950, takes this optimistic view. He points out that even in

deductive logic there are only limited areas in which mechanical

procedures are possible. For example, there is no procedure (hence
no machine) that will discover fruitful or interesting new theorems

in logic or mathematics. As in science, the ability to find such

theorems rests upon intuition and luck. Again: there is no effective

procedure (hence no machine) that will find a proof for a logical

or mathematical theorem except on the lowest levels of logic, the

truth-value calculi where the matrix method is applicable. It is
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possible, however, to find mechanical procedures for checking
proofs in the higher logics, and Carnap believes that corresponding
procedures can be found in inductive logic for determining the de-

gree of confirmation of a working hypothesis once it has been formu-
lated. He gives as a trivial example the fact that there are three

million people in Chicago of whom two million have dark hair.

We wish to determine the color of hair of an individual. All we
know about him is that he lives in Chicago. We conclude, there-

fore, that the hypothesis that the individual has black hair has a

degree of two-thirds confirmation. In brief, a logic of probability
underlies inductive reasoning, and to the degree that such reason-

ing employs this logic, to that degree will it be possible to devise

machines for handling it.

The . . . point has sometimes been formulated [Carnap writes, p. 193]
by saying that it is not possible to construct an inductive machine. The
latter is presumably meant as a mechanical contrivance which, when fed an
observational report, would furnish a suitable hypothesis, just as a comput-
ing machine when supplied with two factors furnishes their product. I am
completely in agreement that an inductive machine of this kind is not pos-
sible. However, I think we must be careful not to draw too far reaching
negative consequences from this fact. 1 do not believe that this fact excludes
the possibility of a system of inductive logic with exact rules or the possi-

bility of an inductive machine with a different, more limited, aim. It seems
to me that, in this respect, the situation in inductive logic is similar to that
in deductive logic.

4

The question of whether a machine can ever be devised that will

perform the creative tasks of devising experiments, suggesting

hypotheses, inventing useful machines, and so on, carries us into a

realm where only philosophers and the writers of science fiction can

profitably venture. From our present vantage point, the frontiers

of science spread out in all directions into areas of seemingly
infinite and unpredictable variety. If the whole of scientific knowl-

edge rests ultimately on a set of principles that are finite in number,
with all things taking their appointed places in a rigid deductive

structure, and if all these basic principles became known, then the

situation would be radically altered and machines for exploring the

structure might become a possibility. This was, as we saw in the first

chapter, the dream of Lull and Leibnitz; and even Francis Bacon,

though he had only harsh words for Lull, also supposed that there

was a final limit to scientific knowledge. Bacon's system of indue-
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tion rests squarely on the possibility of obtaining an exhaustive list

of facts relevant to a given inductive problem. Unfortunately, the

universe seems to be vaster and more varied than Bacon imagined,

thus rendering his system unworkable in its essential aspects. It is in-

teresting to speculate on whether this will always be the case. If

physics, for example, ever becomes a deductive system (as Edding-

ton, Milne, and some other mathematical physicists have suggested

it might), with a finite number of postulates, then the possibility

returns of discovering a new law or inventing a new gadget in

much the same way that a geometer proceeds to investigate the

properties of a geometrical figure. As we have seen, however, even

in mathematics the discovery of new theorems is more intuitive

than mechanical. Add to this the upsetting discovery of Kurt Godel,

dashing the hopes that all mathematics can ever be caught in one

deductive web, and the possibility of an inductive machine creative

enough to replace the scientist becomes remote indeed.

All these topics have long been familiar to the writers of modern

science fiction. I am not referring to the robots of science fantasy

(artificial creatures, mechanical or otherwise), but to the mammoth
electronic brains that lack powers of locomotion. Such brains

often take over the functions of government, develop self-aware-

ness, become psychotic, duplicate themselves, often outlast or

destroy the race of creatures that originally constructed them. Brain,

a three-act play by Lionel Britton (published in England in 1930)
was one of the earliest fantasies, if not the first, to introduce a

machine of this type a "cold, dark, dead thing creeping over the

world." All the knowledge of humanity was fed to the Brain, where

it was combined with logical connectives so that the Brain could

give objective, unemotional answers to all questions, including
moral and political ones. Over the centuries it grew in power until

it became the master of the race. Since Britton's play, giant brains

of this sort have figured in hundreds of science fiction novels and

short stories.

The fear that machines may develop creative powers and a will

of their own has received classic literary treatment in Samuel But-

ler's Erewhon, Karel Capek's R.U.R., and Ambrose Bierce's terri-

fying story of the robot chess player who strangles his inventor after

losing a game. Charles Peirce did not share these fears. In his article

"Logical Machines" (from which we quoted in Chapter 6) he
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argues that, even if a machine could be constructed with the power
to "direct itself between different possible procedures" and so

thread its way through complicated proofs,

... it would still remain true that the machine would be utterly devoid of

original initiative, and would only do the special kind of thing it had been

calculated to do. r>

This, however, is no defect in a machine; we do not want

it to do its own business, but ours. The difficulty with the balloon, for in-

stance, is that it has too much initiative, that it is not mechanical enough.
We no more want an original machine, than a housebuilder would want an

original journeyman, or an American board of college trustees would hire

an original professor.

If Peirce were alive today, perhaps his optimism would be shat-

tered by the many recent machines that are capable of learning

from experience. W. Gray Walter's docilis, a mechanical "turtle,"

has no difficulty at all in developing conditioned reflexes. Claude

Shannon's mouse is one of several ingenious mechanisms con-

structed for running mazes. The mouse first blunders his way
through a maze until he solves it by trial and error; but he "remem-

bers" all that he has learned about the maze so that when given a

second trial he runs the maze without a single false turn. Machines

of this sort can acquire unpredictable behavior patterns, and to the

degree that they do, they cease in a sense to be obedient. They do

what they have learned to do, an altogether different matter from

what they are wired to do.

Or is it altogether different? The distinction begins to blur when
we reflect on the sense in which even digital computers learn from

experience. After reading an early draft of this chapter, William

Burkhart wrote (and I quote with his permission):

In doing division a desk calculator subtracts until it gets a negative re-

mainder, adds back until it gets a positive remainder, then shifts and repeats.

Similarly, an electronic calculator decides what to do next on the basis of

past results of computation. For example, in calculating a table of sines or

cosines the machine will guess the first value poorly. But when it computes
the next value in the table it will first guess that the answer is the same as

the previous answer (a good guess) and go on from that point successively

improving its approximations to any desired degree of accuracy. On each

successive approximation the machine notes how close its answer is to the

previous one. When, finally, two successive answers differ by a negligible

amount, the calculator stops approximating and prints its answer.

Is such a machine, which slavishly follows rules, learning? I think not.

Rather it is just another machine following rules slavishly. To learn, I believe
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we must generalize, and this is a creative process. Before building true learn-

ing machines we must first learn to build creative and inductive ma-

chines. . . .

Machines are things which manipulate symbols exactly as they are wired

to do. If we interpret their inputs and outputs as being numbers, then the

machine is a computer. If we interpret the answers as logical statements, it is

a logic machine. If we connect the outputs to a motor, the machine is a

modern elevator control system. If we connect them to a mechanical mouse,

it is a parlor game. . . .

In most cases, one's attitude toward these vexing questions will

depend on whether one is a philosophical mechanist, regarding

man as nothing more than an extremely complicated symbol-ma-

nipulating and information-processing machine (doing what it is

wired to do by heredity and wired to learn to do from its environ-

ment) or an idealist who believes man to be something more than

this. To a large extent, this conflict may be a matter of words.

William James, for example, believed that human personality was

capable of surviving death, yet he regarded the human brain as a

tool which learns in a manner analogous to the way an earthworm

learns. Of course man's powers of learning and thinking are of a

much higher order than the powers of an earthworm or Shannon's

mechanical mouse, but it is hard to see where a line can be drawn

on the evolutionary tree to separate one type of learning from

another. There seems lo be only a spectrum of increasing neural

complexity, and as with all spectrums, one can talk about it in

words that emphasize continuity and sameness of parts, or in words

that emphasize distinctions and differences between the parts.

If the idealist will grant that man's ability to think creatively may
arise from an extremely intricate, as yet unknown type of neural

structure, the mechanist might be willing to concede that powers of

symbol manipulation have emerged from this structure which are

qualitatively different from those possessed by man-made machines

or even by the lower animals. In the, light of these concessions, the

two attitudes may not be so far apart as the rhetoric usually em-

ployed by both sides would suggest.

In science fiction even the "dead," obedient logic machines have

reached proportions awesome enough to stagger one's credulity.

Clifford D. Simak's story, "Limiting Factor" (first published in

Startling Stones, November, 1949) tells of a group of space ex-

plorers who come upon a small uninhabited planet completely sur-
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rounded by a shell of burnished metal. Below this shell, extending

downward for twenty miles and all around the planet, is the interior

of an electronic machine. Presumably the culture that had once

flourished on the planet's natural surface, beneath the machine,

had faced problems of such colossal magnitude that it had been

forced to migrate to a larger planet where an even larger machine

could be built.

A spoon slides from the knapsack of one of the spacemen as he

leans over a ramp. It falls through a maze of circuits, tubes, wheels,

shafts, and mysterious cubes of crystal; tinkling its way past the

dusty parts of a mechanism so vast that the human race may never

fathom how to use it or learn the purposes for which it was con-

structed.
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